IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v7y2018i2p37-d150282.html
   My bibliography  Save this article

The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review

Author

Listed:
  • Saba Daneshgar

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 PAVIA, Italy)

  • Arianna Callegari

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 PAVIA, Italy)

  • Andrea G. Capodaglio

    (Department of Civil Engineering and Architecture, University of Pavia, 27100 PAVIA, Italy)

  • David Vaccari

    (Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA)

Abstract

Phosphorus is an essential nutrient for every organism on the Earth, yet it is also a potential environmental pollutant, which may cause eutrophication of water bodies. Wastewater treatment plants worldwide are struggling to eliminate phosphorus from effluents, at great cost, yet current research suggests that the world may deplete the more available phosphorus reserves by around 2300. This, in addition to environmental concerns, evokes the need for new phosphorus recovery techniques to be developed, to meet future generations needs for renewable phosphorus supply. Many studies have been, and are, carried out on phosphorus recovery from wastewater and its sludge, due to their high phosphorus content. Chemical precipitation is the main process for achieving a phosphorus-containing mineral suitable for reuse as a fertilizer, such as struvite. This paper reviews the current status and future trends of phosphorus production and consumption, and summarizes current recovery technologies, discussing their possible integration into wastewater treatment processes, according to a more sustainable water-energy-nutrient nexus.

Suggested Citation

  • Saba Daneshgar & Arianna Callegari & Andrea G. Capodaglio & David Vaccari, 2018. "The Potential Phosphorus Crisis: Resource Conservation and Possible Escape Technologies: A Review," Resources, MDPI, vol. 7(2), pages 1-22, June.
  • Handle: RePEc:gam:jresou:v:7:y:2018:i:2:p:37-:d:150282
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/7/2/37/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/7/2/37/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cooper, James & Lombardi, Rachel & Boardman, David & Carliell-Marquet, Cynthia, 2011. "The future distribution and production of global phosphate rock reserves," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 78-86.
    2. Walan, Petter & Davidsson, Simon & Johansson, Sheshti & Höök, Mikael, 2014. "Phosphate rock production and depletion: Regional disaggregated modeling and global implications," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 178-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leticia Regueiro & Richard Newton & Mohamed Soula & Diego Méndez & Björn Kok & David C. Little & Roberto Pastres & Johan Johansen & Martiña Ferreira, 2022. "Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework," Journal of Industrial Ecology, Yale University, vol. 26(6), pages 2033-2044, December.
    2. Viola Somogyi & Viktória Pitás & Kinga M. Berta & Róbert Kurdi, 2022. "Red Mud as Adsorbent to Recover Phosphorous from Wastewater Streams," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    3. Jinzhu Wu & Yifan Li & Baojian Xu & Mei Li & Jing Wang & Yuanyuan Shao & Feiyong Chen & Meng Sun & Bing Liu, 2022. "Effects of Physicochemical Parameters on Struvite Crystallization Based on Kinetics," IJERPH, MDPI, vol. 19(12), pages 1-11, June.
    4. Dae Wook Kim & Sung Il Yu & Kyuyong Im & Juhee Shin & Seung Gu Shin, 2022. "Responses of Coagulant Type, Dosage and Process Conditions to Phosphate Removal Efficiency from Anaerobic Sludge," IJERPH, MDPI, vol. 19(3), pages 1-9, February.
    5. Saba Daneshgar & Armando Buttafava & Arianna Callegari & Andrea G. Capodaglio, 2018. "Simulations and Laboratory Tests for Assessing Phosphorus Recovery Efficiency from Sewage Sludge," Resources, MDPI, vol. 7(3), pages 1-14, August.
    6. Xiaoqi Liu & Jialong Lv, 2023. "Efficient Phosphate Removal from Wastewater by Ca-Laden Biochar Composites Prepared from Eggshell and Peanut Shells: A Comparison of Methods," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    7. Joanna Rodziewicz & Artur Mielcarek & Wojciech Janczukowicz & Jorge Manuel Rodrigues Tavares & Krzysztof Jóźwiakowski, 2023. "Characteristics of Sludge from the Treatment of Soilless Plant Cultivation Wastewater in a Rotating Electrobiological Disc Contactor (REBDC)," Energies, MDPI, vol. 16(3), pages 1-15, January.
    8. N. Evelin Paucar & Chikashi Sato, 2022. "An Overview of Microbial Fuel Cells within Constructed Wetland for Simultaneous Nutrient Removal and Power Generation," Energies, MDPI, vol. 15(18), pages 1-30, September.
    9. Kati Martikainen & Anna-Maria Veijalainen & Eila Torvinen & Helvi Heinonen-Tanski, 2023. "Treatment of Domestic Wastewater in Small-Scale Sand Filters Fortified with Gypsum, Biotite, and Peat," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    10. Leandro Israel da Silva & Marlon Correa Pereira & André Mundstock Xavier de Carvalho & Victor Hugo Buttrós & Moacir Pasqual & Joyce Dória, 2023. "Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture," Agriculture, MDPI, vol. 13(2), pages 1-30, February.
    11. Saba Daneshgar & Armando Buttafava & Doretta Capsoni & Arianna Callegari & Andrea G. Capodaglio, 2018. "Impact of pH and Ionic Molar Ratios on Phosphorous Forms Precipitation and Recovery from Different Wastewater Sludges," Resources, MDPI, vol. 7(4), pages 1-22, November.
    12. Cora Eichholz & Matthias Barjenbruch & Claus-Gerhard Bannick & Peter Hartwig, 2023. "A Study on the Situation and Learnings of the Precipitant Shortage in the German Wastewater Sector," Resources, MDPI, vol. 13(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahlin, Johannes & Herbes, Carsten & Nelles, Michael, 2015. "Biogas digestate marketing: Qualitative insights into the supply side," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 152-161.
    2. Dahlin, Johannes & Nelles, Michael & Herbes, Carsten, 2017. "Biogas digestate management: Evaluating the attitudes and perceptions of German gardeners towards digestate-based soil amendments," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 27-38.
    3. Maaß, Oliver & Grundmann, Philipp & von Bock und Polach, Carlotta, 2014. "Added-value from innovative value chains by establishing nutrient cycles via struvite," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 126-136.
    4. Yao Kohou Donatien Guéablé & Youssef Bezrhoud & Haitam Moulay & Lhoussaine Moughli & Mohamed Hafidi & Mohamed El Gharouss & Khalil El Mejahed, 2021. "New Approach for Mining Site Reclamation Using Alternative Substrate Based on Phosphate Industry By-Product and Sludge Mixture," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    5. Vu Van Long & Chau Minh Khoi & Doan Thi Truc Linh & Nguyen Van Qui & Nguyen Minh Dong & Ben Macdonald, 2023. "Phosphorus behavior under long-term fertilization in the intensive rice cultivation system," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(2), pages 88-94.
    6. Burlakovs, Juris & Kriipsalu, Mait & Klavins, Maris & Bhatnagar, Amit & Vincevica-Gaile, Zane & Stenis, Jan & Jani, Yahya & Mykhaylenko, Valeriy & Denafas, Gintaras & Turkadze, Tsitsino & Hogland, Mar, 2017. "Paradigms on landfill mining: From dump site scavenging to ecosystem services revitalization," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 73-84.
    7. Reijnders, L., 2014. "Phosphorus resources, their depletion and conservation, a review," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 32-49.
    8. Anna Karpinska & Demi Ryan & Kieran Germaine & David Dowling & Patrick Forrestal & Thomais Kakouli-Duarte, 2021. "Soil Microbial and Nematode Community Response to the Field Application of Recycled Bio-Based Fertilisers in Irish Grassland," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    9. Xiaoqi Liu & Jialong Lv, 2023. "Efficient Phosphate Removal from Wastewater by Ca-Laden Biochar Composites Prepared from Eggshell and Peanut Shells: A Comparison of Methods," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    10. Misrol, Mohd Arif & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abd Manan, Zainuddin, 2021. "Optimization of energy-water-waste nexus at district level: A techno-economic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Hamza El Azhari & El Khalil Cherif & Rachid El Halimi & El Mustapha Azzirgue & Yassine Ou Larbi & Franco Coren & Farida Salmoun, 2024. "Predicting the Production and Depletion of Rare Earth Elements and Their Influence on Energy Sector Sustainability through the Utilization of Multilevel Linear Prediction Mixed-Effects Models with R S," Sustainability, MDPI, vol. 16(5), pages 1-32, February.
    12. Houssini, Khaoula & Geng, Yong & Liu, Jing-Yu & Zeng, Xianlai & Hohl, Simon V., 2023. "Measuring anthropogenic phosphorus cycles to promote resource recovery and circularity in Morocco," Resources Policy, Elsevier, vol. 81(C).
    13. Cooper, James & Carliell-Marquet, Cynthia, 2013. "A substance flow analysis of phosphorus in the UK food production and consumption system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 82-100.
    14. Yang, Shubo & Jahanger, Atif & Balsalobre-Lorente, Daniel, 2024. "Sustainable resource management in China's energy mining sector: A synthesis of development and conservation in the FinTech era," Resources Policy, Elsevier, vol. 89(C).
    15. Saba Daneshgar & Armando Buttafava & Doretta Capsoni & Arianna Callegari & Andrea G. Capodaglio, 2018. "Impact of pH and Ionic Molar Ratios on Phosphorous Forms Precipitation and Recovery from Different Wastewater Sludges," Resources, MDPI, vol. 7(4), pages 1-22, November.
    16. Saba Daneshgar & Armando Buttafava & Arianna Callegari & Andrea G. Capodaglio, 2018. "Simulations and Laboratory Tests for Assessing Phosphorus Recovery Efficiency from Sewage Sludge," Resources, MDPI, vol. 7(3), pages 1-14, August.
    17. El Moçayd, Nabil & Seaid, Mohammed, 2021. "Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Jorge Paz-Ferreiro & Aurora Nieto & Ana Méndez & Matthew Peter James Askeland & Gabriel Gascó, 2018. "Biochar from Biosolids Pyrolysis: A Review," IJERPH, MDPI, vol. 15(5), pages 1-16, May.
    19. Luo, Zhibo & Ma, Shujie & Hu, Shanying & Chen, Dingjiang, 2017. "Towards the sustainable development of the regional phosphorus resources industry in China: A system dynamics approach," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 186-197.
    20. Zeng, Xianlai & Li, Jinhui, 2015. "On the sustainability of cobalt utilization in China," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 12-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:7:y:2018:i:2:p:37-:d:150282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.