Biochar from Biosolids Pyrolysis: A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cooper, James & Lombardi, Rachel & Boardman, David & Carliell-Marquet, Cynthia, 2011. "The future distribution and production of global phosphate rock reserves," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 78-86.
- Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
- Werle, Sebastian & Wilk, Ryszard K., 2010. "A review of methods for the thermal utilization of sewage sludge: The Polish perspective," Renewable Energy, Elsevier, vol. 35(9), pages 1914-1919.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Maria P. C. Volpi & Jean C. G. Silva & Andreas Hornung & Miloud Ouadi, 2024. "Review of the Current State of Pyrolysis and Biochar Utilization in Europe: A Scientific Perspective," Clean Technol., MDPI, vol. 6(1), pages 1-24, February.
- Polina Kuryntseva & Kamalya Karamova & Polina Galitskaya & Svetlana Selivanovskaya & Gennady Evtugyn, 2023. "Biochar Functions in Soil Depending on Feedstock and Pyrolyzation Properties with Particular Emphasis on Biological Properties," Agriculture, MDPI, vol. 13(10), pages 1-39, October.
- Samar Elkhalifa & Hamish R. Mackey & Tareq Al-Ansari & Gordon McKay, 2022. "Pyrolysis of Biosolids to Produce Biochars: A Review," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
- Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Anna Kritikaki & Styliani Voutsadaki & Maria L. Saru & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "The Impact of Sewage-Sludge- and Olive-Mill-Waste-Derived Biochar Amendments to Tomato Cultivation," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
- Yumeng Yang & Barry Meehan & Kalpit Shah & Aravind Surapaneni & Jeff Hughes & Leon Fouché & Jorge Paz-Ferreiro, 2018. "Physicochemical Properties of Biochars Produced from Biosolids in Victoria, Australia," IJERPH, MDPI, vol. 15(7), pages 1-13, July.
- Róger Moya & Carolina Tenorio & Jaime Quesada-Kimzey & Federico Másis-Meléndez, 2024. "Pyrogenic Carbonaceous Materials Production of Four Tropical Wood Produced by Slow Pyrolysis at Different Temperatures: Charcoal and Biochar Properties," Energies, MDPI, vol. 17(8), pages 1-21, April.
- Maria A. Lilli & Nikolaos V. Paranychianakis & Konstantinos Lionoudakis & Maria L. Saru & Styliani Voutsadaki & Anna Kritikaki & Konstantinos Komnitsas & Nikolaos P. Nikolaidis, 2023. "Characterization and Risk Assessment of Different-Origin Biochars Applied in Agricultural Experiments," Sustainability, MDPI, vol. 15(11), pages 1-16, June.
- Payel Sinha & Serhiy Marchuk & Peter Harris & Diogenes L. Antille & Bernadette K. McCabe, 2023. "Land Application of Biosolids-Derived Biochar in Australia: A Review," Sustainability, MDPI, vol. 15(14), pages 1-29, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Praspaliauskas, M. & Pedišius, N., 2017. "A review of sludge characteristics in Lithuania's wastewater treatment plants and perspectives of its usage in thermal processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 899-907.
- Dinko Đurđević & Saša Žiković & Paolo Blecich, 2022. "Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia," Energies, MDPI, vol. 15(11), pages 1-23, May.
- Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
- Patel, Savankumar & Kundu, Sazal & Halder, Pobitra & Rickards, Lauren & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Madapusi, Srinivasan & Shah, Kalpit, 2019. "Thermogravimetric Analysis of biosolids pyrolysis in the presence of mineral oxides," Renewable Energy, Elsevier, vol. 141(C), pages 707-716.
- Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
- Ren, Jingzheng & Liang, Hanwei & Dong, Liang & Gao, Zhiqiu & He, Chang & Pan, Ming & Sun, Lu, 2017. "Sustainable development of sewage sludge-to-energy in China: Barriers identification and technologies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 384-396.
- Adar, Elanur & Karatop, Buket & İnce, Mahir & Bilgili, Mehmet Sinan, 2016. "Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 429-440.
- Katarzyna Zabielska-Adamska, 2019. "Sewage Sludge Bottom Ash Characteristics and Potential Application in Road Embankment," Sustainability, MDPI, vol. 12(1), pages 1-14, December.
- Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
- Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
- Seongmin Kang & Changsang Cho & Ki-Hyun Kim & Eui-chan Jeon, 2018. "Fossil Carbon Fraction and Measuring Cycle for Sewage Sludge Waste Incineration," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
- Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
- Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.
- Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
- Faubert, Patrick & Barnabé, Simon & Bouchard, Sylvie & Côté, Richard & Villeneuve, Claude, 2016. "Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions?," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 107-133.
- Junshen Qu & Daiying Wang & Zeyu Deng & Hejie Yu & Jianjun Dai & Xiaotao Bi, 2023. "Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
- Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
- Magdziarz, Aneta & Wilk, Małgorzata & Gajek, Marcin & Nowak-Woźny, Dorota & Kopia, Agnieszka & Kalemba-Rec, Izabela & Koziński, Janusz A., 2016. "Properties of ash generated during sewage sludge combustion: A multifaceted analysis," Energy, Elsevier, vol. 113(C), pages 85-94.
- Maaß, Oliver & Grundmann, Philipp & von Bock und Polach, Carlotta, 2014. "Added-value from innovative value chains by establishing nutrient cycles via struvite," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 126-136.
More about this item
Keywords
biochar; biosolids; soil amelioration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:5:p:956-:d:145624. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.