IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i1p11-d1027984.html
   My bibliography  Save this article

Modelling of Burnt Pine Heartwood Acid-Catalysed Liquefaction

Author

Listed:
  • Sila Ozkan

    (CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Diogo Gonçalves

    (CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Ivo Paulo

    (CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Carla S. G. P. Queirós

    (CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
    Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal)

  • Ana Carvalho

    (Centre for Management Studies (CEG-IST), Instituto Superior Técnico, University of Lisbon, 1649-004 Lisbon, Portugal)

  • Jaime Puna

    (CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
    Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal)

  • João Gomes

    (CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
    Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal)

  • João Bordado

    (CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

  • Rui Galhano dos Santos

    (CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal)

Abstract

This study focused on bio-oil production by thermochemical liquefaction. For the reaction, the burnt pine heartwood was used as feedstock material, 2-Ethylhexanol (2-EHEX) was used as a solvent, p -Toluenesulfonic acid (pTSA) was used as a catalyst, and the solvent for washing was acetone. The procedure consisted of a moderate-acid-catalysed liquefaction process, and it was applied at three different temperatures, 120, 140, and 160 °C, and at 30, 105, and 180 min periods with 1%, 5.5%, and 10% (m/m) catalyst concentration of overall mass. Optimal results showed a bio-oil yield of 86.03% and a higher heating value (HHV) of 36.41 MJ/kg, which was 1.96 times more than the HHV of the burnt pine heartwood. A reaction surface methodology (Box–Behnken design) was performed for the liquefaction reaction optimisation. Reaction temperature, reaction time and catalyst concentration were chosen as independent variables. The obtained model showed good results with a high adjusted R-squared (0.988) and an excellent p -value (less than 0.001). The liquefied products were characterised by Fourier Transformed Infrared (FTIR) and thermogravimetric analysis (TGA), and also Scanning electron microscopy (SEM) was carried out to validate the impact of the morphological changes on the surface area of the solid samples. This study shows an excellent opportunity to validate a method to upcycle woody wastes via acid-catalysed liquefaction. In particular, this approach is of great interest to produce bio-oil with a good yield, recovering part of the values lost during wildfires.

Suggested Citation

  • Sila Ozkan & Diogo Gonçalves & Ivo Paulo & Carla S. G. P. Queirós & Ana Carvalho & Jaime Puna & João Gomes & João Bordado & Rui Galhano dos Santos, 2023. "Modelling of Burnt Pine Heartwood Acid-Catalysed Liquefaction," Resources, MDPI, vol. 12(1), pages 1-17, January.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:1:p:11-:d:1027984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/1/11/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/1/11/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Feng & Yu, Jianming & Tesso, Tesfaye & Dowell, Floyd & Wang, Donghai, 2013. "Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review," Applied Energy, Elsevier, vol. 104(C), pages 801-809.
    2. Mateus, Maria Margarida & do Vale, Mário & Rodrigues, Abel & Bordado, João Carlos & Galhano dos Santos, Rui, 2017. "Is biomass liquefaction an option for the viability of poplar short rotation coppices? A preliminary experimental approach," Energy, Elsevier, vol. 124(C), pages 40-45.
    3. Jayanto Kumar Sarkar & Qingyue Wang, 2020. "Different Pyrolysis Process Conditions of South Asian Waste Coconut Shell and Characterization of Gas, Bio-Char, and Bio-Oil," Energies, MDPI, vol. 13(8), pages 1-14, April.
    4. Frederico Fernandes & Sandro Matos & Daniela Gaspar & Luciana Silva & Ivo Paulo & Salomé Vieira & Paula C. R. Pinto & João Bordado & Rui Galhano dos Santos, 2021. "Boosting the Higher Heating Value of Eucalyptus globulus via Thermochemical Liquefaction," Sustainability, MDPI, vol. 13(7), pages 1-10, March.
    5. Fang, Jun & Liu, Zhuangzhuang & Luan, Hui & Liu, Fen & Yuan, Xingzhong & Long, Shundong & Wang, Andong & Ma, Yong & Xiao, Zhihua, 2021. "Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions," Renewable Energy, Elsevier, vol. 167(C), pages 32-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mumtaz, Hamza & Sobek, Szymon & Sajdak, Marcin & Muzyka, Roksana & Drewniak, Sabina & Werle, Sebastian, 2023. "Oxidative liquefaction as an alternative method of recycling and the pyrolysis kinetics of wind turbine blades," Energy, Elsevier, vol. 278(PB).
    2. Kim, Seok Jun & Park, Sun Yong & Oh, Kwang Cheol & Cho, La hoon & Jeon, Young Kwang & Kim, Dae Hyun, 2023. "Improvement of fuel characteristics for forest by-products applied surface torrefaction process," Energy, Elsevier, vol. 284(C).
    3. Lin, Pengmusen & Yu, Xinyu & Wang, Han & Ming, Hui & Ge, Shengbo & Liu, Fang & Peng, Haowei & Sonne, Christian & Zhang, Libo, 2023. "Life cycle assessment of bio-oil prepared from low-temperature hydrothermal oxide-catalyzed cotton stalk," Energy, Elsevier, vol. 282(C).
    4. Jin, Yanghao & Liu, Sirui & Shi, Ziyi & Wang, Shule & Wen, Yuming & Zaini, Ilman Nuran & Tang, Chuchu & Hedenqvist, Mikael S. & Lu, Xincheng & Kawi, Sibudjing & Wang, Chi-Hwa & Jiang, Jianchun & Jönss, 2024. "A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    2. Krishna, Bhavya B. & Biswas, Bijoy & Ohri, Priyanka & Kumar, Jitendra & Singh, Rawel & Bhaskar, Thallada, 2016. "Pyrolysis of Cedrus deodara saw mill shavings in hydrogen and nitrogen atmosphere for the production of bio-oil," Renewable Energy, Elsevier, vol. 98(C), pages 238-244.
    3. Hu, Lin & Xu, Mei-Ling & Wei, Xian-Yong & Yu, Changlin & Wu, Jingcheng & Wang, Haiyong & Liu, Tianlong, 2024. "Effect of ethanolysis on the structure evolution, pyrolysis kinetics, and volatile products of waste poplar sawdust," Energy, Elsevier, vol. 305(C).
    4. Kłosowski, Grzegorz & Mikulski, Dawid, 2023. "Changes in various lignocellulose biomasses structure after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 219(P1).
    5. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    6. Junying Chen & Lijun Wang & Bo Zhang & Rui Li & Abolghasem Shahbazi, 2018. "Hydrothermal Liquefaction Enhanced by Various Chemicals as a Means of Sustainable Dairy Manure Treatment," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    7. Song, Yintao & Chen, Zhuo & Li, Yanling & Sun, Tanglei & Huhetaoli, & Lei, Tingzhou & Liu, Peng, 2024. "Regulation of energy properties and thermal behavior of bio-coal from lignocellulosic biomass using torrefaction," Energy, Elsevier, vol. 289(C).
    8. Abdul Waheed & Salman Raza Naqvi & Imtiaz Ali, 2022. "Co-Torrefaction Progress of Biomass Residue/Waste Obtained for High-Value Bio-Solid Products," Energies, MDPI, vol. 15(21), pages 1-20, November.
    9. Alexander Gorshkov & Nikolay Berezikov & Albert Kaltaev & Stanislav Yankovsky & Konstantin Slyusarsky & Roman Tabakaev & Kirill Larionov, 2021. "Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere," Energies, MDPI, vol. 14(23), pages 1-18, December.
    10. Tom Haeldermans & Jeamichel Puente Torres & Willem Vercruysse & Robert Carleer & Pieter Samyn & Dries Vandamme & Jan Yperman & Ann Cuypers & Kenny Vanreppelen & Sonja Schreurs, 2023. "An Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs," Waste, MDPI, vol. 1(1), pages 1-19, January.
    11. John Steven Devia-Orjuela & Christian E Alvarez-Pugliese & Dayana Donneys-Victoria & Nilson Marriaga Cabrales & Luz Edith Barba Ho & Balazs Brém & Anca Sauciuc & Emese Gál & Douglas Espin & Martin Sch, 2019. "Evaluation of Press Mud, Vinasse Powder and Extraction Sludge with Ethanol in a Pyrolysis Process," Energies, MDPI, vol. 12(21), pages 1-21, October.
    12. Do-Gun Kim & Shinnee Boldbaatar & Seok-Oh Ko, 2022. "Enhanced Adsorption of Tetracycline by Thermal Modification of Coconut Shell-Based Activated Carbon," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
    13. Pizzi, A. & Toscano, G. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Renzi, A. & Mancini, M., 2018. "Energy characteristics assessment of olive pomace by means of FT-NIR spectroscopy," Energy, Elsevier, vol. 147(C), pages 51-58.
    14. Andrea Kruse & Thomas A. Zevaco, 2018. "Properties of Hydrochar as Function of Feedstock, Reaction Conditions and Post-Treatment," Energies, MDPI, vol. 11(3), pages 1-12, March.
    15. Chen, Dongyu & Gao, Dongxiao & Capareda, Sergio C. & E, Shuang & Jia, Fengrui & Wang, Ying, 2020. "Influences of hydrochloric acid washing on the thermal decomposition behavior and thermodynamic parameters of sweet sorghum stalk," Renewable Energy, Elsevier, vol. 148(C), pages 1244-1255.
    16. Zhang, Ke & Zhou, Ling & Brady, Michael & Xu, Feng & Yu, Jianming & Wang, Donghai, 2017. "Fast analysis of high heating value and elemental compositions of sorghum biomass using near-infrared spectroscopy," Energy, Elsevier, vol. 118(C), pages 1353-1360.
    17. Chen, Chao & Liang, Rui & Ge, Yadong & Li, Jian & Yan, Beibei & Cheng, Zhanjun & Tao, Junyu & Wang, Zhenyu & Li, Meng & Chen, Guanyi, 2022. "Fast characterization of biomass pyrolysis oil via combination of ATR-FTIR and machine learning models," Renewable Energy, Elsevier, vol. 194(C), pages 220-231.
    18. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    19. Guo, Feiqiang & Qiao, Qixia & Mao, Songbo & Bai, Jiaming & Dong, Kaiming & Shu, Rui & Xu, Liya & Wei, Haixiao & Qian, Lin & Wang, Yunpu, 2023. "A comprehensive study on the pyrolysis behavior of pine sawdust catalyzed by different metal ions under conventional and microwave heating conditions," Energy, Elsevier, vol. 272(C).
    20. Gupta, Ankita & Mahajani, Sanjay, 2020. "Kinetic studies in pyrolysis of garden waste in the context of downdraft gasification: Experiments and modeling," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:1:p:11-:d:1027984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.