IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1970-d346331.html
   My bibliography  Save this article

Different Pyrolysis Process Conditions of South Asian Waste Coconut Shell and Characterization of Gas, Bio-Char, and Bio-Oil

Author

Listed:
  • Jayanto Kumar Sarkar

    (Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan)

  • Qingyue Wang

    (Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan)

Abstract

In the present study, a series of laboratory experiments were conducted to examine the impact of pyrolysis temperature on the outcome yields of waste coconut shells in a fixed bed reactor under varying conditions of pyrolysis temperature, from 400 to 800 °C. The temperature was increased at a stable heating rate of about 10 °C/min, while keeping the sweeping gas (Ar) flow rate constant at about 100 mL/min. The bio-oil was described by Fourier transform infrared spectroscopy (FTIR) investigations and demonstrated to be an exceptionally oxygenated complex mixture. The resulting bio-chars were characterized by elemental analysis and scanning electron microscopy (SEM). The output of bio-char was diminished pointedly, from 33.6% to 28.6%, when the pyrolysis temperature ranged from 400 to 600 °C, respectively. In addition, the bio-chars were carbonized with the expansion of the pyrolysis temperature. Moreover, the remaining bio-char carbons were improved under a stable structure. Experimental results showed that the highest bio-oil yield was acquired at 600 °C, at about 48.7%. The production of gas increased from 15.4 to 18.3 wt.% as the temperature increased from 400 to 800 °C. Additionally, it was observed that temperature played a vital role on the product yield, as well as having a vital effect on the characteristics of waste coconut shell slow-pyrolysis.

Suggested Citation

  • Jayanto Kumar Sarkar & Qingyue Wang, 2020. "Different Pyrolysis Process Conditions of South Asian Waste Coconut Shell and Characterization of Gas, Bio-Char, and Bio-Oil," Energies, MDPI, vol. 13(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1970-:d:346331
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1970/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1970/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goyal, H.B. & Seal, Diptendu & Saxena, R.C., 2008. "Bio-fuels from thermochemical conversion of renewable resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 504-517, February.
    2. Hoque, M.M & Bhattacharya, S.C, 2001. "Fuel characteristics of gasified coconut shell in a fluidized and a spouted bed reactor," Energy, Elsevier, vol. 26(1), pages 101-110.
    3. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    4. Enweremadu, C.C. & Mbarawa, M.M., 2009. "Technical aspects of production and analysis of biodiesel from used cooking oil--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2205-2224, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Do-Gun Kim & Shinnee Boldbaatar & Seok-Oh Ko, 2022. "Enhanced Adsorption of Tetracycline by Thermal Modification of Coconut Shell-Based Activated Carbon," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
    2. Sila Ozkan & Diogo Gonçalves & Ivo Paulo & Carla S. G. P. Queirós & Ana Carvalho & Jaime Puna & João Gomes & João Bordado & Rui Galhano dos Santos, 2023. "Modelling of Burnt Pine Heartwood Acid-Catalysed Liquefaction," Resources, MDPI, vol. 12(1), pages 1-17, January.
    3. Marcela M. Marcelino & Gary A. Leeke & Guozhan Jiang & Jude A. Onwudili & Carine T. Alves & Delano M. de Santana & Felipe A. Torres & Ednildo A. Torres & Silvio A. B. Vieira de Melo, 2023. "Supercritical Water Gasification of Coconut Shell Impregnated with a Nickel Nanocatalyst: Box–Behnken Design and Process Evaluation," Energies, MDPI, vol. 16(8), pages 1-34, April.
    4. Kumar, Rakesh & Dubey, Pratik & Mondal, Monoj Kumar, 2024. "Analysis of kinetics, mechanism, thermodynamic properties and product distribution for pyrolysis of Ni–Fe impregnated coconut husk," Renewable Energy, Elsevier, vol. 222(C).
    5. Alexander Gorshkov & Nikolay Berezikov & Albert Kaltaev & Stanislav Yankovsky & Konstantin Slyusarsky & Roman Tabakaev & Kirill Larionov, 2021. "Analysis of the Physicochemical Characteristics of Biochar Obtained by Slow Pyrolysis of Nut Shells in a Nitrogen Atmosphere," Energies, MDPI, vol. 14(23), pages 1-18, December.
    6. Guo, Feiqiang & Qiao, Qixia & Mao, Songbo & Bai, Jiaming & Dong, Kaiming & Shu, Rui & Xu, Liya & Wei, Haixiao & Qian, Lin & Wang, Yunpu, 2023. "A comprehensive study on the pyrolysis behavior of pine sawdust catalyzed by different metal ions under conventional and microwave heating conditions," Energy, Elsevier, vol. 272(C).
    7. Bogdan Saletnik & Marcin Bajcar & Aneta Saletnik & Grzegorz Zaguła & Czesław Puchalski, 2021. "Effect of the Pyrolysis Process Applied to Waste Branches Biomass from Fruit Trees on the Calorific Value of the Biochar and Dust Explosivity," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    2. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    4. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    5. Tripathi, Manoj & Sahu, J.N. & Ganesan, P., 2016. "Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 467-481.
    6. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    7. Anna Poskart & Magdalena Skrzyniarz & Marcin Sajdak & Monika Zajemska & Andrzej Skibiński, 2021. "Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy," Energies, MDPI, vol. 14(18), pages 1-17, September.
    8. Gholizadeh, Mortaza & Hu, Xun & Liu, Qing, 2019. "A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Brigljević, Boris & Žuvela, Petar & Liu, J. Jay & Woo, Hee-Chul & Choi, Jae Hyung, 2018. "Development of an automated method for modelling of bio-crudes originating from biofuel production processes based on thermochemical conversion," Applied Energy, Elsevier, vol. 215(C), pages 670-678.
    11. Muzyka, Roksana & Misztal, Edyta & Hrabak, Joanna & Banks, Scott W. & Sajdak, Marcin, 2023. "Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar," Energy, Elsevier, vol. 263(PE).
    12. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    13. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.
    14. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    15. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    16. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    17. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    18. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    19. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    20. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1970-:d:346331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.