IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013022.html
   My bibliography  Save this article

Changes in various lignocellulose biomasses structure after microwave-assisted hydrotropic pretreatment

Author

Listed:
  • Kłosowski, Grzegorz
  • Mikulski, Dawid

Abstract

Effective pretreatment of lignocellulosic biomass combined with delignification is a condition for effective enzymatic hydrolysis of cellulose, which is of key significance for the efficiency of the process of production of cellulosic ethanol. Becoming aware of the full range of changes in the structure of lignocellulose as a result of biomass pretreatment is important in view of the necessity to optimise the process of technological production of bioethanol. Our research was aimed at a comprehensive analysis of changes in structure of pine chip (softwood), beech chip (hardwood) and wheat straw (non-wood) biomasses resulting from a newly developed pretreatment method combining the use of hydrotrope in the form of sodium cumene sulfonate and microwave radiation. The performed analyses of the biomass composition indicate a high effectiveness of the proposed pretreatment method in the area of biomass delignification and hemicellulose removal. An effective removal of amorphous substances, i.e. lignin and hemicellulose, led to an increase in the crystallinity of pine chip biomass to 55%, and beech chips and wheat straw biomasses to 61%.

Suggested Citation

  • Kłosowski, Grzegorz & Mikulski, Dawid, 2023. "Changes in various lignocellulose biomasses structure after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013022
    DOI: 10.1016/j.renene.2023.119387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Devendra, Leena P. & Pandey, Ashok, 2016. "Hydrotropic pretreatment on rice straw for bioethanol production," Renewable Energy, Elsevier, vol. 98(C), pages 2-8.
    2. Xu, Feng & Yu, Jianming & Tesso, Tesfaye & Dowell, Floyd & Wang, Donghai, 2013. "Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review," Applied Energy, Elsevier, vol. 104(C), pages 801-809.
    3. Singh, Renu & Shukla, Ashish & Tiwari, Sapna & Srivastava, Monika, 2014. "A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 713-728.
    4. Małgorzata Smuga-Kogut & Bartosz Walendzik & Daria Szymanowska-Powalowska & Joanna Kobus-Cisowska & Janusz Wojdalski & Mateusz Wieczorek & Judyta Cielecka-Piontek, 2019. "Comparison of Bioethanol Preparation from Triticale Straw Using the Ionic Liquid and Sulfate Methods," Energies, MDPI, vol. 12(6), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    2. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    3. de Lucas, Rosymar Coutinho & de Oliveira, Tássio Brito & Lima, Matheus Sanitá & Pasin, Thiago Machado & Scarcella, Ana Sílvia de Almeida & Ribeiro, Liliane Fraga Costa & Carvalho, Caio & Damasio, Andr, 2021. "The profile secretion of Aspergillus clavatus: Different pre-treatments of sugarcane bagasse distinctly induces holocellulases for the lignocellulosic biomass conversion into sugar," Renewable Energy, Elsevier, vol. 165(P1), pages 748-757.
    4. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    5. Junying Chen & Lijun Wang & Bo Zhang & Rui Li & Abolghasem Shahbazi, 2018. "Hydrothermal Liquefaction Enhanced by Various Chemicals as a Means of Sustainable Dairy Manure Treatment," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    6. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    7. Song, Yintao & Chen, Zhuo & Li, Yanling & Sun, Tanglei & Huhetaoli, & Lei, Tingzhou & Liu, Peng, 2024. "Regulation of energy properties and thermal behavior of bio-coal from lignocellulosic biomass using torrefaction," Energy, Elsevier, vol. 289(C).
    8. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    9. Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree, 2021. "Comparative Study on Quality of Fuel Pellets from Switchgrass Treated with Different White-Rot Fungi," Energies, MDPI, vol. 14(22), pages 1-19, November.
    10. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    11. Tom Haeldermans & Jeamichel Puente Torres & Willem Vercruysse & Robert Carleer & Pieter Samyn & Dries Vandamme & Jan Yperman & Ann Cuypers & Kenny Vanreppelen & Sonja Schreurs, 2023. "An Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs," Waste, MDPI, vol. 1(1), pages 1-19, January.
    12. Pizzi, A. & Toscano, G. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Renzi, A. & Mancini, M., 2018. "Energy characteristics assessment of olive pomace by means of FT-NIR spectroscopy," Energy, Elsevier, vol. 147(C), pages 51-58.
    13. Chen, Dongyu & Gao, Dongxiao & Capareda, Sergio C. & E, Shuang & Jia, Fengrui & Wang, Ying, 2020. "Influences of hydrochloric acid washing on the thermal decomposition behavior and thermodynamic parameters of sweet sorghum stalk," Renewable Energy, Elsevier, vol. 148(C), pages 1244-1255.
    14. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    15. Gillespie, Gary D. & Everard, Colm D. & McDonnell, Kevin P., 2015. "Prediction of biomass pellet quality indices using near infrared spectroscopy," Energy, Elsevier, vol. 80(C), pages 582-588.
    16. Long, Jinxing & Shu, Riyang & Yuan, Zhengqiu & Wang, Tiejun & Xu, Ying & Zhang, Xinghua & Zhang, Qi & Ma, Longlong, 2015. "Efficient valorization of lignin depolymerization products in the present of NixMg1−xO," Applied Energy, Elsevier, vol. 157(C), pages 540-545.
    17. José Luis Fernández & Felicia Sáez & Eulogio Castro & Paloma Manzanares & Mercedes Ballesteros & María José Negro, 2019. "Determination of the Lignocellulosic Components of Olive Tree Pruning Biomass by Near Infrared Spectroscopy," Energies, MDPI, vol. 12(13), pages 1-10, June.
    18. Małgorzata Smuga-Kogut & Bartosz Walendzik & Katarzyna Lewicka-Rataj & Tomasz Kogut & Leszek Bychto & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2024. "Application of Proton Ionic Liquid in the Process of Obtaining Bioethanol from Hemp Stalks," Energies, MDPI, vol. 17(4), pages 1-15, February.
    19. Biswas, Bijoy & Singh, Rawel & Kumar, Jitendra & Singh, Raghuvir & Gupta, Piyush & Krishna, Bhavya B. & Bhaskar, Thallada, 2018. "Pyrolysis behavior of rice straw under carbon dioxide for production of bio-oil," Renewable Energy, Elsevier, vol. 129(PB), pages 686-694.
    20. Patricia Portero-Barahona & Enrique Javier Carvajal-Barriga & Jesús Martín-Gil & Pablo Martín-Ramos, 2019. "Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment," Energies, MDPI, vol. 12(9), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.