IDEAS home Printed from https://ideas.repec.org/a/taf/jriskr/v17y2014i7p885-901.html
   My bibliography  Save this article

Statistical methods for modeling the risk of runway excursions

Author

Listed:
  • Dustin C.S. Wagner
  • Kash Barker

Abstract

The goals of this paper are to: (i) enhance the manner in which fatal airport runway excursions are modeled and quantified and (ii) explore a means to mitigate their occurrence and severity. While other research in predicting runway excursions has focused on the type of excursion, this work focuses on predicting if the excursion will generate fatalities. As the adverse effects of fatalities can be extreme in nature, there exists a need to be able to: (i) understand the root causes of fatal excursions, (ii) predict the likelihood of fatal excursions, and (iii) measure the efficacy of risk management strategies employed to prevent them. This work summarizes and applies techniques of data analysis for runway excursions, a significant problem in air travel safety which can lead to fatalities. The techniques deployed in this work to model excursions include logistic regression and Bayesian logistic regression, each of which have strengths and weaknesses in terms of descriptive (e.g. highlighting factors that impact fatalities) and prescriptive (e.g. predicting fatalities under particular operating conditions) domains. An innovative use of the results of this data analysis is in enhancing the likelihood assessment of the traditional risk matrix, which combines (often arbitrary) assessments of likelihood and consequence for particular risk scenarios. Several real-world excursion response options aimed at reducing fatalities through improvements to aviation facilities and processes are compared on the basis of impact, cost, and feasibility.

Suggested Citation

  • Dustin C.S. Wagner & Kash Barker, 2014. "Statistical methods for modeling the risk of runway excursions," Journal of Risk Research, Taylor & Francis Journals, vol. 17(7), pages 885-901, August.
  • Handle: RePEc:taf:jriskr:v:17:y:2014:i:7:p:885-901
    DOI: 10.1080/13669877.2013.822913
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13669877.2013.822913
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13669877.2013.822913?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Zhenyu & Haimes, Yacov Y., 2010. "Cross-classified hierarchical Bayesian models for risk-based analysis of complex systems under sparse data," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 764-776.
    2. Kim, Dohyun & Yang, Hanmo, 2012. "Evaluation of the risk frequency for hazards of runway incursion in Korea," Journal of Air Transport Management, Elsevier, vol. 23(C), pages 31-35.
    3. King, Gary & Zeng, Langche, 2001. "Logistic Regression in Rare Events Data," Political Analysis, Cambridge University Press, vol. 9(2), pages 137-163, January.
    4. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    5. Louis Anthony Cox, 2009. "Risk Analysis of Complex and Uncertain Systems," International Series in Operations Research and Management Science, Springer, number 978-0-387-89014-2, April.
    6. Maalouf, Maher & Trafalis, Theodore B., 2011. "Robust weighted kernel logistic regression in imbalanced and rare events data," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 168-183, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2021. "RiskLogitboost Regression for Rare Events in Binary Response: An Econometric Approach," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    2. Neuberg Richard & Hannah Lauren, 2017. "Loan pricing under estimation risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 69-87, June.
    3. Hani M. Samawi & Haresh Rochani & Daniel Linder & Arpita Chatterjee, 2017. "More efficient logistic analysis using moving extreme ranked set sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 753-766, March.
    4. Angel M. Morales & Patrick Tarwater & Indika Mallawaarachchi & Alok Kumar Dwivedi & Juan B. Figueroa-Casas, 2015. "Multinomial logistic regression approach for the evaluation of binary diagnostic test in medical research," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(2), pages 203-222, June.
    5. F. Gauthier & D. Germain & B. Hétu, 2017. "Logistic models as a forecasting tool for snow avalanches in a cold maritime climate: northern Gaspésie, Québec, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 201-232, October.
    6. Douglas Cumming & Lars Hornuf & Moein Karami & Denis Schweizer, 2023. "Disentangling Crowdfunding from Fraudfunding," Journal of Business Ethics, Springer, vol. 182(4), pages 1103-1128, February.
    7. Eunae Yoo & Elliot Rabinovich & Bin Gu, 2020. "The Growth of Follower Networks on Social Media Platforms for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2696-2715, December.
    8. Cemal Eren Arbatlı & Quamrul H. Ashraf & Oded Galor & Marc Klemp, 2020. "Diversity and Conflict," Econometrica, Econometric Society, vol. 88(2), pages 727-797, March.
    9. Lo Turco, Alessia & Maggioni, Daniela, 2018. "Effects of Islamic religiosity on bilateral trust in trade: The case of Turkish exports," Journal of Comparative Economics, Elsevier, vol. 46(4), pages 947-965.
    10. Matija Kovacic & Claudio Zoli, 2021. "Ethnic distribution, effective power and conflict," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(2), pages 257-299, August.
    11. Blackman, Allen & Guerrero, Santiago, 2012. "What drives voluntary eco-certification in Mexico?," Journal of Comparative Economics, Elsevier, vol. 40(2), pages 256-268.
    12. Jacob Ausderan, 2018. "Reassessing the democratic advantage in interstate wars using k-adic datasets," Conflict Management and Peace Science, Peace Science Society (International), vol. 35(5), pages 451-473, September.
    13. Alessandra Iannamorelli & Stefano Nobili & Antonio Scalia & Luana Zaccaria, 2024. "Asymmetric Information and Corporate Lending: Evidence from SME Bond Markets," Review of Finance, European Finance Association, vol. 28(1), pages 163-201.
    14. Paul Poast, 2013. "Issue linkage and international cooperation: An empirical investigation," Conflict Management and Peace Science, Peace Science Society (International), vol. 30(3), pages 286-303, July.
    15. Yerko Rojas, 2017. "Evictions and short-term all-cause mortality: a 3-year follow-up study of a middle-aged Swedish population," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 62(3), pages 343-351, April.
    16. Mehrez Ben Slama & Dhafer Saidane & Hassouna Fedhila, 2012. "How to identify targets in the M&A banking operations? Case of cross-border strategies in Europe by line of activity," Review of Quantitative Finance and Accounting, Springer, vol. 38(2), pages 209-240, February.
    17. Marcin Chlebus, 2014. "One-day prediction of state of turbulence for financial instrument based on models for binary dependent variable," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 37.
    18. Lorenzo Cassi & Anne Plunket, 2014. "Proximity, network formation and inventive performance: in search of the proximity paradox," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 395-422, September.
    19. Trent Geisler & Herman Ray & Ying Xie, 2023. "Finding the Proverbial Needle: Improving Minority Class Identification Under Extreme Class Imbalance," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 192-212, April.
    20. Wegenast, Tim, 2013. "The Impact of Fuel Ownership on Intrastate Violence," GIGA Working Papers 225, GIGA German Institute of Global and Area Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jriskr:v:17:y:2014:i:7:p:885-901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RJRR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.