IDEAS home Printed from https://ideas.repec.org/p/osf/socarx/qga8j_v1.html
   My bibliography  Save this paper

How Can We Learn from Borrowers’ Online Behaviors? The Signal Effect of Borrowers’ Platform Involvement on Their Credit Risk

Author

Listed:
  • Tang, Xinyin
  • Feng, Chong
  • Zhu, Jianping
  • He, Minna

Abstract

A growing number of borrowers are applying for digital credit through Internet platforms due to the integration of digital credit services the Internet. However, further empirical evidence is needed to explore how a borrower’s platform behaviors affect its credit risk. As such, our study uses signaling theory as the theoretical foundation to explore the overall effects of a borrower's platform involvement intensity on its credit risk based on a large consumer credit application dataset. The main finding shows the increase in a borrower’s involvement intensity reduces its likelihood of defaulting. We attribute it to the platform's belief that borrowers with high involvement intensity have the higher value to the platform. In addition, we examine how a borrower's involvement intensity is moderated by several factors, such as the stability of its platform involvement intensity and its credit history. Due to the importance of digital credit services in microfinance, we have provided useful implications for achieving win-win outcomes in the credit market for the stakeholders.

Suggested Citation

  • Tang, Xinyin & Feng, Chong & Zhu, Jianping & He, Minna, 2022. "How Can We Learn from Borrowers’ Online Behaviors? The Signal Effect of Borrowers’ Platform Involvement on Their Credit Risk," SocArXiv qga8j_v1, Center for Open Science.
  • Handle: RePEc:osf:socarx:qga8j_v1
    DOI: 10.31219/osf.io/qga8j_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/63854de9a98e5f1b101035f8/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/qga8j_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:socarx:qga8j_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://arabixiv.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.