IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1421-d577829.html
   My bibliography  Save this article

A Method for Prediction of Waterlogging Economic Losses in a Subway Station Project

Author

Listed:
  • Han Wu

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

  • Junwu Wang

    (School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China)

Abstract

In order to effectively solve the problems of low prediction accuracy and calculation efficiency of existing methods for estimating economic loss in a subway station engineering project due to rainstorm flooding, a new intelligent prediction model is developed using the sparrow search algorithm (SSA), the least-squares support vector machine (LSSVM) and the mean impact value (MIV) method. First, in this study, 11 input variables are determined from the disaster loss rate and asset value, and a complete method is provided for acquiring and processing data of all variables. Then, the SSA method, with strong optimization ability, fast convergence and few parameters, is used to optimize the kernel function and the penalty factor parameters of the LSSVM. Finally, the MIV is used to identify the important input variables, so as to reduce the predicted input variables and achieve higher calculation accuracy. In addition, 45 station projects in China were selected for empirical analysis. The empirical results revealed that the linear correlation between the 11 input variables and output variables was weak, which demonstrated the necessity of adopting nonlinear analysis methods such as the LSSVM. Compared with other forecasting methods, such as the multiple regression analysis, the backpropagation neural network (BPNN), the BPNN optimized by the particle swarm optimization, the BPNN optimized by the SSA, the LSSVM, the LSSVM optimized by the genetic algorithm, the PSO-LSSVM and the LSSVM optimized by the Grey Wolf Optimizer, the model proposed in this paper had higher accuracy and stability and was effectively used for forecasting economic loss in subway station engineering projects due to rainstorms.

Suggested Citation

  • Han Wu & Junwu Wang, 2021. "A Method for Prediction of Waterlogging Economic Losses in a Subway Station Project," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1421-:d:577829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Shaolong & Lu, Hongxu & Tsui, Kwok-Leung & Wang, Shouyang, 2019. "Nonlinear vector auto-regression neural network for forecasting air passenger flow," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 54-62.
    2. Xianhua Wu & Yaru Cao & Yang Xiao & Ji Guo, 2020. "Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics," Annals of Operations Research, Springer, vol. 290(1), pages 865-896, July.
    3. Young Seok Song & Moo Jong Park, 2019. "Development of Damage Prediction Formula for Natural Disasters Considering Economic Indicators," Sustainability, MDPI, vol. 11(3), pages 1-22, February.
    4. Yue Zhao & Zaiwu Gong & Wenhao Wang & Kai Luo, 2014. "The comprehensive risk evaluation on rainstorm and flood disaster losses in China mainland from 2004 to 2009: based on the triangular gray correlation theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1001-1016, March.
    5. Francq, Bernard G. & Govaerts, Bernadette, 2016. "How to regress and predict in a Bland-Altman plot? Review and contribution based on tolerance intervals and correlated-errors-in-variables models," LIDAM Reprints ISBA 2016042, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Bing Zeng & Jiang Guo & Fangqing Zhang & Wenqiang Zhu & Zhihuai Xiao & Sixu Huang & Peng Fan, 2020. "Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition," Energies, MDPI, vol. 13(2), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sang-Guk Yum & Sungjin Ahn & Junseo Bae & Ji-Myong Kim, 2020. "Assessing the Risk of Natural Disaster-Induced Losses to Tunnel-Construction Projects Using Empirical Financial-Loss Data from South Korea," Sustainability, MDPI, vol. 12(19), pages 1-15, September.
    2. Young Seok Song & Moo Jong Park & Jung Ho Lee & Byung Sik Kim & Yang Ho Song, 2020. "Improvement Measure of Integrated Disaster Management System Considering Disaster Damage Characteristics: Focusing on the Republic of Korea," Sustainability, MDPI, vol. 12(1), pages 1-18, January.
    3. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    4. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    5. da Silva Filho, Flávio Lopes, 2022. "Aplicação do modelo de séries temporais para previsão do número de passageiros de uma companhia aérea," SocArXiv gmyaj, Center for Open Science.
    6. Jin, Feng & Li, Yongwu & Sun, Shaolong & Li, Hongtao, 2020. "Forecasting air passenger demand with a new hybrid ensemble approach," Journal of Air Transport Management, Elsevier, vol. 83(C).
    7. Sheng, Jichuan & Qiu, Wenge & Han, Xiao, 2020. "China’s PES-like horizontal eco-compensation program: Combining market-oriented mechanisms and government interventions," Ecosystem Services, Elsevier, vol. 45(C).
    8. Richard S. J. Tol, 2022. "State capacity and vulnerability to natural disasters," Chapters, in: Mark Skidmore (ed.), Handbook on the Economics of Disasters, chapter 20, pages 434-457, Edward Elgar Publishing.
    9. Zhitao Xu & Adel Elomri & Roberto Baldacci & Laoucine Kerbache & Zhenyong Wu, 2024. "Frontiers and trends of supply chain optimization in the age of industry 4.0: an operations research perspective," Annals of Operations Research, Springer, vol. 338(2), pages 1359-1401, July.
    10. Zhongxiu Peng & Cong Wang & Wenqing Xu & Jinsong Zhang, 2022. "Research on Location-Routing Problem of Maritime Emergency Materials Distribution Based on Bi-Level Programming," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    11. Gizem Kaya & Umut Aydın & Burç Ülengin, 2023. "A Comparison of Forecasting Performance of PPML and OLS estimators: The Gravity Model in the Air Cargo Market," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 112-128, December.
    12. Kangye Tan & Yihui Tian & Fang Xu & Chunsheng Li, 2023. "Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    13. Ari, Didem & Mizrak Ozfirat, Pinar, 2024. "Comparison of artificial neural networks and regression analysis for airway passenger estimation," Journal of Air Transport Management, Elsevier, vol. 115(C).
    14. Hongwu Tang & Hao Cao & Saiyu Yuan & Yang Xiao & Chenyu Jiang & Carlo Gualtieri, 2020. "A Numerical Study of Hydrodynamic Processes and Flood Mitigation in a Large River-lake System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(12), pages 3739-3760, September.
    15. Xiong, Xin & Hu, Xi & Guo, Huan, 2021. "A hybrid optimized grey seasonal variation index model improved by whale optimization algorithm for forecasting the residential electricity consumption," Energy, Elsevier, vol. 234(C).
    16. Jiale Zhao & Fuqiang Yang & Yong Guo & Xin Ren, 2022. "A CAST-Based Analysis of the Metro Accident That Was Triggered by the Zhengzhou Heavy Rainstorm Disaster," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    17. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
    18. Kedong Yin & Ya Zhang & Xuemei Li, 2017. "Research on Storm-Tide Disaster Losses in China Using a New Grey Relational Analysis Model with the Dispersion of Panel Data," IJERPH, MDPI, vol. 14(11), pages 1-18, November.
    19. Santoveña-Casal, Sonia & Pérez, Ma Dolores Fernández, 2022. "Relevance of E-Participation in the state health campaign in Spain: #EstoNoEsUnJuego / #ThisIsNotAGame," Technology in Society, Elsevier, vol. 68(C).
    20. Li, Jingmiao & Wang, Jun, 2020. "Forcasting of energy futures market and synchronization based on stochastic gated recurrent unit model," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1421-:d:577829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.