IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i2d10.1007_s10479-024-05879-9.html
   My bibliography  Save this article

Frontiers and trends of supply chain optimization in the age of industry 4.0: an operations research perspective

Author

Listed:
  • Zhitao Xu

    (Nanjing University of Aeronautics and Astronautics)

  • Adel Elomri

    (Hamad Bin Khalifa University)

  • Roberto Baldacci

    (Hamad Bin Khalifa University)

  • Laoucine Kerbache

    (Hamad Bin Khalifa University
    HEC)

  • Zhenyong Wu

    (Nanjing University of Information Science and Technology)

Abstract

Industrial 4.0 (I4.0) is believed to revolutionize supply chain (SC) management and the articles in this domain have experienced remarkable increments in recent years. However, the existing insights are scattered over different sub-topics and most of the existing review papers have ignored the underground decision-making process using OR methods. This paper aims to depict the current state of the art of the articles on SC optimization in I4.0 and identify the frontiers and limitations as well as the promising research avenue in this arena. In this study, the systematic literature review methodology combined with the content analysis is adopted to survey the literature between 2013 and 2022. It contributes to the literature by identifying the four OR innovations to typify the recent advances in SC optimization: new modeling conditions, new inputs, new decisions, and new algorithms. Furthermore, we recommend four promising research avenues in this interplay: (1) incorporating new decisions relevant to data-enabled SC decisions, (2) developing data-enabled modeling approaches, (3) preprocessing parameters, and (4) developing data-enabled algorithms. Scholars can take this investigation as a means to ignite collaborative research that tackles the emerging problems in business, whereas practitioners can glean a better understanding of how to employ their OR experts to support digital SC decision-making.

Suggested Citation

  • Zhitao Xu & Adel Elomri & Roberto Baldacci & Laoucine Kerbache & Zhenyong Wu, 2024. "Frontiers and trends of supply chain optimization in the age of industry 4.0: an operations research perspective," Annals of Operations Research, Springer, vol. 338(2), pages 1359-1401, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:2:d:10.1007_s10479-024-05879-9
    DOI: 10.1007/s10479-024-05879-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-05879-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-05879-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nikolaus Furian & Michael O’Sullivan & Cameron Walker & Eranda Çela, 2021. "A machine learning-based branch and price algorithm for a sampled vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 693-732, September.
    2. Yanhui Li & Lu Xu, 2021. "Cybersecurity investments in a two-echelon supply chain with third-party risk propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 59(4), pages 1216-1238, February.
    3. Can Sun & Yonghua Ji, 2022. "For Better or For Worse: Impacts of IoT Technology in e‐Commerce Channel," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1353-1371, March.
    4. Kong, Xiang T.R. & Kang, Kai & Zhong, Ray Y. & Luo, Hao & Xu, Su Xiu, 2021. "Cyber physical system-enabled on-demand logistics trading," International Journal of Production Economics, Elsevier, vol. 233(C).
    5. Grazia Speranza, M., 2018. "Trends in transportation and logistics," European Journal of Operational Research, Elsevier, vol. 264(3), pages 830-836.
    6. Yang Yu & Ray Qing Cao & Dara Schniederjans, 2017. "Cloud computing and its impact on service level: a multi-agent simulation model," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4341-4353, August.
    7. Weihua Liu & Shangsong Long & Shuang Wei & Dong Xie & Jingkun Wang & Xinyun Liu, 2022. "Smart logistics ecological cooperation with data sharing and platform empowerment: an examination with evolutionary game model," International Journal of Production Research, Taylor & Francis Journals, vol. 60(13), pages 4295-4315, July.
    8. Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
    9. Shalini Talwar & Puneet Kaur & Samuel Fosso Wamba & Amandeep Dhir, 2021. "Big Data in operations and supply chain management: a systematic literature review and future research agenda," International Journal of Production Research, Taylor & Francis Journals, vol. 59(11), pages 3509-3534, June.
    10. Yang, Ya & Chi, Huihui & Tang, Ou & Zhou, Wei & Fan, Tijun, 2019. "Cross perishable effect on optimal inventory preservation control," European Journal of Operational Research, Elsevier, vol. 276(3), pages 998-1012.
    11. Bin Shen & Ciwei Dong & Stefan Minner, 2022. "Combating Copycats in the Supply Chain with Permissioned Blockchain Technology," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 138-154, January.
    12. Li, Yuze & Jiang, Shangrong & Shi, Jianming & Wei, Yunjie, 2021. "Pricing strategies for blockchain payment service under customer heterogeneity," International Journal of Production Economics, Elsevier, vol. 242(C).
    13. Choi, Tsan-Ming & Guo, Shu & Liu, Na & Shi, Xiutian, 2020. "Optimal pricing in on-demand-service-platform-operations with hired agents and risk-sensitive customers in the blockchain era," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1031-1042.
    14. Ehsan Aghamohammadzadeh & Mahsa Malek & Omid Fatahi Valilai, 2020. "A novel model for optimisation of logistics and manufacturing operation service composition in Cloud manufacturing system focusing on cloud-entropy," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 1987-2015, April.
    15. Chang, Jasmine (Aichih) & Katehakis, Michael N. & Shi, Jim (Junmin) & Yan, Zhipeng, 2021. "Blockchain-empowered Newsvendor optimization," International Journal of Production Economics, Elsevier, vol. 238(C).
    16. Liu, Weihua & Long, Shangsong & Xie, Dong & Liang, Yanjie & Wang, Jinkun, 2021. "How to govern the big data discriminatory pricing behavior in the platform service supply chain?An examination with a three-party evolutionary game model," International Journal of Production Economics, Elsevier, vol. 231(C).
    17. Nativi, Juan Jose & Lee, Seokcheon, 2012. "Impact of RFID information-sharing strategies on a decentralized supply chain with reverse logistics operations," International Journal of Production Economics, Elsevier, vol. 136(2), pages 366-377.
    18. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2019. "The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 829-846, February.
    19. Tadeusz Sawik, 2022. "Balancing cybersecurity in a supply chain under direct and indirect cyber risks," International Journal of Production Research, Taylor & Francis Journals, vol. 60(2), pages 766-782, January.
    20. Shraddha Mishra & Surya Prakash Singh, 2022. "A stochastic disaster-resilient and sustainable reverse logistics model in big data environment," Annals of Operations Research, Springer, vol. 319(1), pages 853-884, December.
    21. Dong Li & Xiaojun Wang, 2017. "Dynamic supply chain decisions based on networked sensor data: an application in the chilled food retail chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(17), pages 5127-5141, September.
    22. Ma, Deqing & Hu, Jinsong, 2022. "The optimal combination between blockchain and sales format in an internet platform-based closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 254(C).
    23. Peiyang He & Kunpeng Li & P. N. Ram Kumar, 2022. "An enhanced branch-and-price algorithm for the integrated production and transportation scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 60(6), pages 1874-1889, March.
    24. Nguyen, Tiep & Duong, Quang Huy & Nguyen, Truong Van & Zhu, You & Zhou, Li, 2022. "Knowledge mapping of digital twin and physical internet in Supply Chain Management: A systematic literature review," International Journal of Production Economics, Elsevier, vol. 244(C).
    25. Sun, Jing & Yamamoto, Hisashi & Matsui, Masayuki, 2020. "Horizontal integration management: An optimal switching model for parallel production system with multiple periods in smart supply chain environment," International Journal of Production Economics, Elsevier, vol. 221(C).
    26. Dalenogare, Lucas Santos & Benitez, Guilherme Brittes & Ayala, Néstor Fabián & Frank, Alejandro Germán, 2018. "The expected contribution of Industry 4.0 technologies for industrial performance," International Journal of Production Economics, Elsevier, vol. 204(C), pages 383-394.
    27. Cheung, Kam-Fung & Bell, Michael G.H., 2021. "Attacker–defender model against quantal response adversaries for cyber security in logistics management: An introductory study," European Journal of Operational Research, Elsevier, vol. 291(2), pages 471-481.
    28. Kuo, R.J. & Pai, C.M. & Lin, R.H. & Chu, H.C., 2015. "The integration of association rule mining and artificial immune network for supplier selection and order quantity allocation," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 958-972.
    29. Caiquan Duan & Guoyi Xiu & Fengmin Yao, 2019. "Multi-Period E-Closed-Loop Supply Chain Network Considering Consumers’ Preference for Products and AI-Push," Sustainability, MDPI, vol. 11(17), pages 1-32, August.
    30. Lohmer, Jacob & Bugert, Niels & Lasch, Rainer, 2020. "Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study," International Journal of Production Economics, Elsevier, vol. 228(C).
    31. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Frank Werner & Marina Ivanova, 2016. "A dynamic model and an algorithm for short-term supply chain scheduling in the smart factory industry 4.0," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 386-402, January.
    32. Chen, Xinwei & Ulmer, Marlin W. & Thomas, Barrett W., 2022. "Deep Q-learning for same-day delivery with vehicles and drones," European Journal of Operational Research, Elsevier, vol. 298(3), pages 939-952.
    33. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    34. Duy Tan Nguyen & Yossiri Adulyasak & Jean-François Cordeau & Silvia I. Ponce, 2022. "Data-driven operations and supply chain management: established research clusters from 2000 to early 2020," International Journal of Production Research, Taylor & Francis Journals, vol. 60(17), pages 5407-5431, September.
    35. Nguyen Quoc Viet & Behzad Behdani & Jacqueline Bloemhof, 2020. "Data-driven process redesign: anticipatory shipping in agro-food supply chains," International Journal of Production Research, Taylor & Francis Journals, vol. 58(5), pages 1302-1318, March.
    36. Xiaohua Cao & Tiffany Li & Qiang Wang, 2019. "RFID-based multi-attribute logistics information processing and anomaly mining in production logistics," International Journal of Production Research, Taylor & Francis Journals, vol. 57(17), pages 5453-5466, September.
    37. V. K. Manupati & Tobias Schoenherr & M. Ramkumar & Stephan M. Wagner & Sai Krishna Pabba & R. Inder Raj Singh, 2020. "A blockchain-based approach for a multi-echelon sustainable supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2222-2241, April.
    38. Meng Li & Tao Li, 2022. "AI Automation and Retailer Regret in Supply Chains," Production and Operations Management, Production and Operations Management Society, vol. 31(1), pages 83-97, January.
    39. Bai, Chunguang & Zhu, Qingyun & Sarkis, Joseph, 2021. "Joint blockchain service vendor-platform selection using social network relationships: A multi-provider multi-user decision perspective," International Journal of Production Economics, Elsevier, vol. 238(C).
    40. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    41. Yang, Huixiao & Chen, Wenbo, 2020. "Game modes and investment cost locations in radio-frequency identification (RFID) adoption," European Journal of Operational Research, Elsevier, vol. 286(3), pages 883-896.
    42. Xianhua Wu & Yaru Cao & Yang Xiao & Ji Guo, 2020. "Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics," Annals of Operations Research, Springer, vol. 290(1), pages 865-896, July.
    43. Abedinnia, Hamid & Glock, C. H. & Schneider, Michael, 2017. "Machine scheduling in production: a content analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 87242, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    44. Dong-Young Kim & Bruce Fortado, 2021. "Outcomes of supply chain dependence asymmetry: a systematic review of the statistical evidence," International Journal of Production Research, Taylor & Francis Journals, vol. 59(19), pages 5844-5866, October.
    45. Deniz Preil & Michael Krapp, 2022. "Artificial intelligence-based inventory management: a Monte Carlo tree search approach," Annals of Operations Research, Springer, vol. 308(1), pages 415-439, January.
    46. Yu Zhang & Nan Liu, 2021. "Optimal Internet of Things Technology Adoption Decisions and Pricing Strategies for High-Traceability Logistics Services," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    47. Benjamin T. Hazen & Joseph B. Skipper & Christopher A. Boone & Raymond R. Hill, 2018. "Back in business: operations research in support of big data analytics for operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 201-211, November.
    48. Flores, Hector & Villalobos, J. Rene, 2020. "A stochastic planning framework for the discovery of complementary, agricultural systems," European Journal of Operational Research, Elsevier, vol. 280(2), pages 707-729.
    49. Shenghao Xie & Yu Gong & Martin Kunc & Zongguo Wen & Steve Brown, 2023. "The application of blockchain technology in the recycling chain: a state-of-the-art literature review and conceptual framework," International Journal of Production Research, Taylor & Francis Journals, vol. 61(24), pages 8692-8718, December.
    50. Weiwei Chen & Jie Song & Leyuan Shi & Liang Pi & Peter Sun, 2013. "Data mining-based dispatching system for solving the local pickup and delivery problem," Annals of Operations Research, Springer, vol. 203(1), pages 351-370, March.
    51. Wenzhu Liao & Tong Wang, 2019. "A Novel Collaborative Optimization Model for Job Shop Production–Delivery Considering Time Window and Carbon Emission," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    52. Zhiyuan Wang & Zhiqiang (Eric) Zheng & Wei Jiang & Shaojie Tang, 2021. "Blockchain‐Enabled Data Sharing in Supply Chains: Model, Operationalization, and Tutorial," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 1965-1985, July.
    53. Yongkui Liu & Lihui Wang & Xi Vincent Wang & Xun Xu & Lin Zhang, 2019. "Scheduling in cloud manufacturing: state-of-the-art and research challenges," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 4854-4879, August.
    54. Xing, Guangyuan & Duan, Zhe & Yan, Wenjun & Baykal-Gürsoy, Melike, 2021. "Evaluation of “innovation chain + supply chain” fusion driven by blockchain technology under typical scenario," International Journal of Production Economics, Elsevier, vol. 242(C).
    55. L.A. Risso & G.M.D. Ganga & Moacir Godinho Filho & L.A.D. Santa-Eulalia & T. Chikhi & E. Mosconi, 2023. "Present and Future Perspectives of Blockchain in Supply Chain Management: A Review of Reviews and Research Agenda," Post-Print hal-04277174, HAL.
    56. Adarsh Kumar Singh & Nachiappan Subramanian & Kulwant Singh Pawar & Ruibin Bai, 2018. "Cold chain configuration design: location-allocation decision-making using coordination, value deterioration, and big data approximation," Annals of Operations Research, Springer, vol. 270(1), pages 433-457, November.
    57. Xiaoge Zhang & Felix T.S. Chan & Andrew Adamatzky & Sankaran Mahadevan & Hai Yang & Zili Zhang & Yong Deng, 2017. "An intelligent physarum solver for supply chain network design under profit maximization and oligopolistic competition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 244-263, January.
    58. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    59. Navin K. Dev & Ravi Shankar & Angappa Gunasekaran & Lakshman S. Thakur, 2016. "A hybrid adaptive decision system for supply chain reconfiguration," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7100-7114, December.
    60. Murat Karatas & Erhan Kutanoglu, 2020. "Joint optimization of location, inventory, and condition-based replacement decisions in service parts logistics," IISE Transactions, Taylor & Francis Journals, vol. 53(2), pages 246-271, September.
    61. Yankai Wang & Shilong Wang & Bo Yang & Bo Gao & Sibao Wang, 2022. "An effective adaptive adjustment method for service composition exception handling in cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 735-751, March.
    62. Junming Liu & Weiwei Chen & Jingyuan Yang & Hui Xiong & Can Chen, 2022. "Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 769-789, March.
    63. Weißhuhn, Sandria & Hoberg, Kai, 2021. "Designing smart replenishment systems: Internet-of-Things technology for vendor-managed inventory at end consumers," European Journal of Operational Research, Elsevier, vol. 295(3), pages 949-964.
    64. Hamed Nayernia & Hanna Bahemia & Savvas Papagiannidis, 2022. "A systematic review of the implementation of industry 4.0 from the organisational perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 60(14), pages 4365-4396, July.
    65. Tadeusz Sawik & Bartosz Sawik, 2022. "A rough cut cybersecurity investment using portfolio of security controls with maximum cybersecurity value," International Journal of Production Research, Taylor & Francis Journals, vol. 60(21), pages 6556-6572, November.
    66. Shivam Gupta & Sachin Modgil & Samadrita Bhattacharyya & Indranil Bose, 2022. "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, Springer, vol. 308(1), pages 215-274, January.
    67. S. Kumari & V.G. Venkatesh & F.T.C. Tan & S.V. Bharathi & M. Ramasubramanian & Y. Shi, 2023. "Application of Machine Learning and Artificial Intelligence on Agriculture Supply Chain: A Comprehensive Review and Future Research Directions," Post-Print hal-04433057, HAL.
    68. Zhi-Ping Fan & Xue-Yan Wu & Bing-Bing Cao, 2022. "Considering the traceability awareness of consumers: should the supply chain adopt the blockchain technology?," Annals of Operations Research, Springer, vol. 309(2), pages 837-860, February.
    69. Minyi Xu & Shujian Ma & Gang Wang, 2022. "Differential Game Model of Information Sharing among Supply Chain Finance Based on Blockchain Technology," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    70. Manupati, V.K. & Schoenherr, Tobias & Ramkumar, M. & Panigrahi, Suraj & Sharma, Yash & Mishra, Prakriti, 2022. "Recovery strategies for a disrupted supply chain network: Leveraging blockchain technology in pre- and post-disruption scenarios," International Journal of Production Economics, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chengfu & Chen, Xiangfeng & Xu, Xun & Jin, Wei, 2023. "Financing and operating strategies for blockchain technology-driven accounts receivable chains," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1279-1295.
    2. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    3. Arunmozhi, Manimuthu & Venkatesh, V.G. & Arisian, Sobhan & Shi, Yangyan & Raja Sreedharan, V., 2022. "Application of blockchain and smart contracts in autonomous vehicle supply chains: An experimental design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    4. Vaibhav S. Narwane & Rakesh D. Raut & Sachin Kumar Mangla & Manoj Dora & Balkrishna E. Narkhede, 2023. "Risks to Big Data Analytics and Blockchain Technology Adoption in Supply Chains," Annals of Operations Research, Springer, vol. 327(1), pages 339-374, August.
    5. Bai, Chunguang & Sarkis, Joseph, 2022. "A critical review of formal analytical modeling for blockchain technology in production, operations, and supply chains: Harnessing progress for future potential," International Journal of Production Economics, Elsevier, vol. 250(C).
    6. Núñez-Merino, Miguel & Maqueira-Marín, Juan Manuel & Moyano-Fuentes, José & Castaño-Moraga, Carlos Alberto, 2022. "Industry 4.0 and supply chain. A Systematic Science Mapping analysis," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    7. Amin Vafadarnikjoo & Hadi Badri Ahmadi & James J. H. Liou & Tiago Botelho & Konstantinos Chalvatzis, 2023. "Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process," Annals of Operations Research, Springer, vol. 327(1), pages 129-156, August.
    8. Niu, Baozhuang & Ruan, Yiyuan & Xu, Haotao, 2023. "Turn a blind eye? E-tailer's blockchain participation considering upstream competition between copycats and brands," International Journal of Production Economics, Elsevier, vol. 265(C).
    9. Xu, Xiaoyan & Choi, Tsan-Ming & Chung, Sai-Ho & Guo, Shu, 2023. "Collaborative-commerce in supply chains: A review and classification of analytical models," International Journal of Production Economics, Elsevier, vol. 263(C).
    10. Gupta, Shivam & Modgil, Sachin & Choi, Tsan-Ming & Kumar, Ajay & Antony, Jiju, 2023. "Influences of artificial intelligence and blockchain technology on financial resilience of supply chains," International Journal of Production Economics, Elsevier, vol. 261(C).
    11. Li, Qingying & Ma, Manqiong & Shi, Tianqin & Zhu, Chen, 2022. "Green investment in a sustainable supply chain: The role of blockchain and fairness," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    12. Antonello Cammarano & Vincenzo Varriale & Francesca Michelino & Mauro Caputo, 2023. "Blockchain as enabling factor for implementing RFID and IoT technologies in VMI: a simulation on the Parmigiano Reggiano supply chain," Operations Management Research, Springer, vol. 16(2), pages 726-754, June.
    13. Ji, Guojun & Zhou, Shu & Lai, Kee-Hung & Tan, Kim Hua & Kumar, Ajay, 2022. "Timing of blockchain adoption in a supply chain with competing manufacturers," International Journal of Production Economics, Elsevier, vol. 247(C).
    14. Efpraxia D. Zamani & Conn Smyth & Samrat Gupta & Denis Dennehy, 2023. "Artificial intelligence and big data analytics for supply chain resilience: a systematic literature review," Annals of Operations Research, Springer, vol. 327(2), pages 605-632, August.
    15. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Bryde, David J. & Giannakis, Mihalis & Foropon, Cyril & Roubaud, David & Hazen, Benjamin T., 2020. "Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations," International Journal of Production Economics, Elsevier, vol. 226(C).
    16. Rodríguez-Espíndola, Oscar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel & Emrouznejad, Ali, 2022. "Analysis of the adoption of emergent technologies for risk management in the era of digital manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    17. Zhang, Xuefeng & Li, Zhe & Li, Guo, 2023. "Impacts of blockchain-based digital transition on cold supply chains with a third-party logistics service provider," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    18. Katoozian, Hoora & Zanjani, Masoumeh Kazemi, 2022. "Supply network design for mass personalization in Industry 4.0 era," International Journal of Production Economics, Elsevier, vol. 244(C).
    19. Choi, Tsan-Ming & Siqin, Tana, 2022. "Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    20. Kerstens, Kristiaan & Azadi, Majid & Kazemi Matin, Reza & Farzipoor Saen, Reza, 2024. "Double hedonic price-characteristics frontier estimation for IoT service providers in the industry 5.0 era: A nonconvex perspective accommodating ratios," European Journal of Operational Research, Elsevier, vol. 319(1), pages 222-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:2:d:10.1007_s10479-024-05879-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.