Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Amiri, Abdolreza & Cordero, Alicia & Taghi Darvishi, M. & Torregrosa, Juan R., 2018. "Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 43-57.
- Cordero, Alicia & Gutiérrez, José M. & Magreñán, Á. Alberto & Torregrosa, Juan R., 2016. "Stability analysis of a parametric family of iterative methods for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 26-40.
- Behl, Ramandeep & Cordero, Alicia & Motsa, Sandile S. & Torregrosa, Juan R., 2017. "Stable high-order iterative methods for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 70-88.
- Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2016. "A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 120-140.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Amiri, Abdolreza & Cordero, Alicia & Taghi Darvishi, M. & Torregrosa, Juan R., 2018. "Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 43-57.
- Cristina Amorós & Ioannis K. Argyros & Á. Alberto Magreñán & Samundra Regmi & Rubén González & Juan Antonio Sicilia, 2019. "Extending the Applicability of Stirling’s Method," Mathematics, MDPI, vol. 8(1), pages 1-10, December.
- Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
- Saima Akram & Fiza Zafar & Nusrat Yasmin, 2019. "An Optimal Eighth-Order Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(8), pages 1-14, July.
- Francisco I. Chicharro & Rafael A. Contreras & Neus Garrido, 2020. "A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
- Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
- Ramandeep Behl & Ioannis K. Argyros & Michael Argyros & Mehdi Salimi & Arwa Jeza Alsolami, 2020. "An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence," Mathematics, MDPI, vol. 8(9), pages 1-21, August.
- Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
- Campos, B. & Vindel, P., 2021. "Dynamics of subfamilies of Ostrowski–Chun methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 57-81.
- Deepak Kumar & Janak Raj Sharma & Clemente Cesarano, 2019. "One-Point Optimal Family of Multiple Root Solvers of Second-Order," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
- Francisco I. Chicharro & Alicia Cordero & Neus Garrido & Juan R. Torregrosa, 2019. "Generalized High-Order Classes for Solving Nonlinear Systems and Their Applications," Mathematics, MDPI, vol. 7(12), pages 1-14, December.
- Alicia Cordero & Beny Neta & Juan R. Torregrosa, 2021. "Memorizing Schröder’s Method as an Efficient Strategy for Estimating Roots of Unknown Multiplicity," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
- Beny Neta, 2021. "A Note on Traub’s Method for Systems of Nonlinear Equations," Mathematics, MDPI, vol. 9(23), pages 1-8, November.
- Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
- Vázquez-Lozano, J. Enrique & Cordero, Alicia & Torregrosa, Juan R., 2018. "Dynamical analysis on cubic polynomials of Damped Traub’s method for approximating multiple roots," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 82-99.
- Cristina Amorós & Ioannis K. Argyros & Daniel González & Ángel Alberto Magreñán & Samundra Regmi & Íñigo Sarría, 2020. "New Improvement of the Domain of Parameters for Newton’s Method," Mathematics, MDPI, vol. 8(1), pages 1-12, January.
- Amiri, Abdolreza & Argyros, Ioannis K., 2021. "On the approximation of mth power divided differences preserving the local order of convergence," Applied Mathematics and Computation, Elsevier, vol. 410(C).
More about this item
Keywords
simple root; system of nonlinear equations; Banach space; order of convergence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1375-:d:574613. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.