IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2194-d459443.html
   My bibliography  Save this article

A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions

Author

Listed:
  • Francisco I. Chicharro

    (Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de la Rioja, Av. La Paz 137, 26006 Logroño, Spain)

  • Rafael A. Contreras

    (Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de la Rioja, Av. La Paz 137, 26006 Logroño, Spain)

  • Neus Garrido

    (Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de la Rioja, Av. La Paz 137, 26006 Logroño, Spain)

Abstract

A straightforward family of one-point multiple-root iterative methods is introduced. The family is generated using the technique of weight functions. The order of convergence of the family is determined in its convergence analysis, which shows the constraints that the weight function must satisfy to achieve order three. In this sense, a family of iterative methods can be obtained with a suitable design of the weight function. That is, an iterative algorithm that depends on one or more parameters is designed. This family of iterative methods, starting with proper initial estimations, generates a sequence of approximations to the solution of a problem. A dynamical analysis is also included in the manuscript to study the long-term behavior of the family depending on the parameter value and the initial guess considered. This analysis reveals the good properties of the family for a wide range of values of the parameter. In addition, a numerical test on academic and engineering multiple-root functions is performed.

Suggested Citation

  • Francisco I. Chicharro & Rafael A. Contreras & Neus Garrido, 2020. "A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2194-:d:459443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2017. "A family of optimal quartic-order multiple-zero finders with a weight function of the principal kth root of a derivative-to-derivative ratio and their basins of attraction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 1-21.
    2. Amiri, Abdolreza & Cordero, Alicia & Taghi Darvishi, M. & Torregrosa, Juan R., 2018. "Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 43-57.
    3. Behl, Ramandeep & Cordero, Alicia & Motsa, S.S. & Torregrosa, Juan R., 2015. "On developing fourth-order optimal families of methods for multiple roots and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 520-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uriel Filobello-Nino & Hector Vazquez-Leal & Jesús Huerta-Chua & Jaime Martínez-Castillo & Agustín L. Herrera-May & Mario Alberto Sandoval-Hernandez & Victor Manuel Jimenez-Fernandez, 2022. "The Enhanced Fixed Point Method: An Extremely Simple Procedure to Accelerate the Convergence of the Fixed Point Method to Solve Nonlinear Algebraic Equations," Mathematics, MDPI, vol. 10(20), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Hee Geum & Young Ik Kim, 2019. "On Locating and Counting Satellite Components Born along the Stability Circle in the Parameter Space for a Family of Jarratt-Like Iterative Methods," Mathematics, MDPI, vol. 7(9), pages 1-16, September.
    2. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    3. Samundra Regmi & Ioannis K. Argyros & Santhosh George, 2024. "Convergence of High-Order Derivative-Free Algorithms for the Iterative Solution of Systems of Not Necessarily Differentiable Equations," Mathematics, MDPI, vol. 12(5), pages 1-13, February.
    4. Min-Young Lee & Young Ik Kim, 2020. "Bifurcations along the Boundary Curves of Red Fixed Components in the Parameter Space for Uniparametric, Jarratt-Type Simple-Root Finders," Mathematics, MDPI, vol. 8(1), pages 1-13, January.
    5. Ramandeep Behl & Sonia Bhalla & Eulalia Martínez & Majed Aali Alsulami, 2021. "Derivative-Free King’s Scheme for Multiple Zeros of Nonlinear Functions," Mathematics, MDPI, vol. 9(11), pages 1-14, May.
    6. Young Hee Geum & Young Ik Kim, 2020. "Computational Bifurcations Occurring on Red Fixed Components in the λ -Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    7. Geum, Young Hee & Kim, Young Ik & Magreñán, Á. Alberto, 2016. "A biparametric extension of King’s fourth-order methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 254-275.
    8. Ramandeep Behl & Sonia Bhalla & Ángel Alberto Magreñán & Alejandro Moysi, 2021. "An Optimal Derivative Free Family of Chebyshev–Halley’s Method for Multiple Zeros," Mathematics, MDPI, vol. 9(5), pages 1-19, March.
    9. Francisco I. Chicharro & Alicia Cordero & Neus Garrido & Juan R. Torregrosa, 2019. "Generalized High-Order Classes for Solving Nonlinear Systems and Their Applications," Mathematics, MDPI, vol. 7(12), pages 1-14, December.
    10. Ramandeep Behl & Munish Kansal & Mehdi Salimi, 2020. "Modified King’s Family for Multiple Zeros of Scalar Nonlinear Functions," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    11. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi, 2021. "Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    12. Abhimanyu Kumar & Dharmendra K. Gupta & Eulalia Martínez & Sukhjit Singh, 2018. "Convergence of a Two-Step Iterative Method for Nondifferentiable Operators in Banach Spaces," Complexity, Hindawi, vol. 2018, pages 1-11, May.
    13. Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    14. Amiri, Abdolreza & Argyros, Ioannis K., 2021. "On the approximation of mth power divided differences preserving the local order of convergence," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    15. Lee, Min-Young & Ik Kim, Young & Alberto Magreñán, Á., 2017. "On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 564-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2194-:d:459443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.