IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v283y2016icp120-140.html
   My bibliography  Save this article

A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points

Author

Listed:
  • Geum, Young Hee
  • Kim, Young Ik
  • Neta, Beny

Abstract

A class of three-point sixth-order multiple-root finders and the dynamics behind their extraneous fixed points are investigated by extending modified Newton-like methods with the introduction of the multivariate weight functions in the intermediate steps. The multivariate weight functions dependent on function-to-function ratios play a key role in constructing higher-order iterative methods. Extensive investigation of extraneous fixed points of the proposed iterative methods is carried out for the study of the dynamics associated with corresponding basins of attraction. Numerical experiments applied to a number of test equations strongly support the underlying theory pursued in this paper. Relevant dynamics of the proposed methods is well presented with a variety of illustrative basins of attraction applied to various test polynomials.

Suggested Citation

  • Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2016. "A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 120-140.
  • Handle: RePEc:eee:apmaco:v:283:y:2016:i:c:p:120-140
    DOI: 10.1016/j.amc.2016.02.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316301400
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.02.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neta, Beny & Chun, Changbum, 2014. "Basins of attraction for several optimal fourth order methods for multiple roots," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 103(C), pages 39-59.
    2. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 387-400.
    3. Argyros, Ioannis K. & Magreñán, Á. Alberto, 2015. "On the convergence of an optimal fourth-order family of methods and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 336-346.
    4. Chun, Changbum & Neta, Beny, 2015. "Comparing the basins of attraction for Kanwar–Bhatia–Kansal family to the best fourth order method," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 277-292.
    5. Magreñán, Á. Alberto & Cordero, Alicia & Gutiérrez, José M. & Torregrosa, Juan R., 2014. "Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 49-61.
    6. Chun, Changbum & Neta, Beny, 2015. "Basins of attraction for Zhou–Chen–Song fourth order family of methods for multiple roots," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 74-91.
    7. Andreu, Carlos & Cambil, Noelia & Cordero, Alicia & Torregrosa, Juan R., 2014. "A class of optimal eighth-order derivative-free methods for solving the Danchick–Gauss problem," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 237-246.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Abdolreza & Cordero, Alicia & Taghi Darvishi, M. & Torregrosa, Juan R., 2018. "Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 43-57.
    2. Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    3. Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
    4. Deepak Kumar & Janak Raj Sharma & Clemente Cesarano, 2019. "One-Point Optimal Family of Multiple Root Solvers of Second-Order," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    5. Ramandeep Behl & Ioannis K. Argyros & Michael Argyros & Mehdi Salimi & Arwa Jeza Alsolami, 2020. "An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence," Mathematics, MDPI, vol. 8(9), pages 1-21, August.
    6. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    7. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi, 2021. "Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    8. Vázquez-Lozano, J. Enrique & Cordero, Alicia & Torregrosa, Juan R., 2018. "Dynamical analysis on cubic polynomials of Damped Traub’s method for approximating multiple roots," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 82-99.
    9. Alicia Cordero & Beny Neta & Juan R. Torregrosa, 2021. "Memorizing Schröder’s Method as an Efficient Strategy for Estimating Roots of Unknown Multiplicity," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    10. Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    11. Saima Akram & Fiza Zafar & Nusrat Yasmin, 2019. "An Optimal Eighth-Order Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(8), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 387-400.
    2. Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
    3. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2015. "On developing a higher-order family of double-Newton methods with a bivariate weighting function," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 277-290.
    4. Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    5. Chun, Changbum & Neta, Beny, 2016. "Comparison of several families of optimal eighth order methods," Applied Mathematics and Computation, Elsevier, vol. 274(C), pages 762-773.
    6. Petković, I. & Herceg, Ð., 2017. "Symbolic computation and computer graphics as tools for developing and studying new root-finding methods," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 95-113.
    7. Chun, Changbum & Neta, Beny, 2016. "An analysis of a Khattri’s 4th order family of methods," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 198-207.
    8. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2017. "A family of optimal quartic-order multiple-zero finders with a weight function of the principal kth root of a derivative-to-derivative ratio and their basins of attraction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 136(C), pages 1-21.
    9. Lee, Min-Young & Ik Kim, Young & Alberto Magreñán, Á., 2017. "On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 564-590.
    10. Chun, Changbum & Neta, Beny, 2015. "Basins of attraction for several third order methods to find multiple roots of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 129-137.
    11. Chun, Changbum & Neta, Beny, 2015. "Comparing the basins of attraction for Kanwar–Bhatia–Kansal family to the best fourth order method," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 277-292.
    12. Argyros, Ioannis K. & Kansal, Munish & Kanwar, Vinay & Bajaj, Sugandha, 2017. "Higher-order derivative-free families of Chebyshev–Halley type methods with or without memory for solving nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 224-245.
    13. Behl, Ramandeep & Cordero, Alicia & Motsa, Sandile S. & Torregrosa, Juan R., 2015. "Construction of fourth-order optimal families of iterative methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 89-101.
    14. Behl, Ramandeep & Cordero, Alicia & Motsa, S.S. & Torregrosa, Juan R., 2015. "On developing fourth-order optimal families of methods for multiple roots and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 520-532.
    15. Sharifi, Somayeh & Salimi, Mehdi & Siegmund, Stefan & Lotfi, Taher, 2016. "A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 69-90.
    16. Geum, Young Hee & Kim, Young Ik & Magreñán, Á. Alberto, 2016. "A biparametric extension of King’s fourth-order methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 254-275.
    17. Chun, Changbum & Neta, Beny, 2015. "An analysis of a family of Maheshwari-based optimal eighth order methods," Applied Mathematics and Computation, Elsevier, vol. 253(C), pages 294-307.
    18. Chun, Changbum & Neta, Beny, 2015. "Basins of attraction for Zhou–Chen–Song fourth order family of methods for multiple roots," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 109(C), pages 74-91.
    19. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    20. Saima Akram & Fiza Zafar & Nusrat Yasmin, 2019. "An Optimal Eighth-Order Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(8), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:283:y:2016:i:c:p:120-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.