IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i23p3073-d690882.html
   My bibliography  Save this article

A Note on Traub’s Method for Systems of Nonlinear Equations

Author

Listed:
  • Beny Neta

    (Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943, USA)

Abstract

Traub’s method was extended here to systems of nonlinear equations and compared to Steffensen’s method. Even though Traub’s method is only of order 1.839 and not quadratic, it performed better in the 10 examples.

Suggested Citation

  • Beny Neta, 2021. "A Note on Traub’s Method for Systems of Nonlinear Equations," Mathematics, MDPI, vol. 9(23), pages 1-8, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3073-:d:690882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/23/3073/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/23/3073/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Narang, Mona & Bhatia, Saurabh & Kanwar, V., 2016. "New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 394-403.
    2. Behl, Ramandeep & Cordero, Alicia & Motsa, Sandile S. & Torregrosa, Juan R., 2017. "Stable high-order iterative methods for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 70-88.
    3. Sharma, Janak Raj & Sharma, Rajni & Kalra, Nitin, 2015. "A novel family of composite Newton–Traub methods for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 520-535.
    4. Alicia Cordero & Fazlollah Soleymani & Juan R. Torregrosa & Stanford Shateyi, 2014. "Basins of Attraction for Various Steffensen-Type Methods," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhanlav, T. & Otgondorj, Kh., 2021. "Higher order Jarratt-like iterations for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    2. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    3. Bahl, Ashu & Cordero, Alicia & Sharma, Rajni & R. Torregrosa, Juan, 2019. "A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 147-166.
    4. Chun, Changbum & Neta, Beny, 2019. "Developing high order methods for the solution of systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 178-190.
    5. Mihael Baketarić & Marjan Mernik & Tomaž Kosar, 2021. "Attraction Basins in Metaheuristics: A Systematic Mapping Study," Mathematics, MDPI, vol. 9(23), pages 1-25, November.
    6. Abro, Hameer Akhtar & Shaikh, Muhammad Mujtaba, 2019. "A new time-efficient and convergent nonlinear solver," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 516-536.
    7. Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros & Ángel Alberto Magreñán, 2019. "On a Bi-Parametric Family of Fourth Order Composite Newton–Jarratt Methods for Nonlinear Systems," Mathematics, MDPI, vol. 7(6), pages 1-27, May.
    8. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi, 2021. "Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    9. Anuradha Singh & J. P. Jaiswal, 2014. "An Efficient Family of Optimal Eighth-Order Iterative Methods for Solving Nonlinear Equations and Its Dynamics," Journal of Mathematics, Hindawi, vol. 2014, pages 1-14, September.
    10. José J. Padilla & Francisco I. Chicharro & Alicia Cordero & Alejandro M. Hernández-Díaz & Juan R. Torregrosa, 2024. "A Class of Efficient Sixth-Order Iterative Methods for Solving the Nonlinear Shear Model of a Reinforced Concrete Beam," Mathematics, MDPI, vol. 12(3), pages 1-16, February.
    11. Hessah Faihan Alqahtani & Ramandeep Behl & Munish Kansal, 2019. "Higher-Order Iteration Schemes for Solving Nonlinear Systems of Equations," Mathematics, MDPI, vol. 7(10), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:23:p:3073-:d:690882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.