IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v323y2018icp43-57.html
   My bibliography  Save this article

Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems

Author

Listed:
  • Amiri, Abdolreza
  • Cordero, Alicia
  • Taghi Darvishi, M.
  • Torregrosa, Juan R.

Abstract

In this paper, a parametric family of seventh-order of iterative method to solve systems of nonlinear equations is presented. Its local convergence is studied and quadratic polynomials are used to investigate its dynamical behavior. The study of the fixed and critical points of the rational function associated to this class allows us to obtain regions of the complex plane where the method is stable. By depicting parameter planes and dynamical planes we obtain complementary information of the analytical results. These results are used to solve some nonlinear problems.

Suggested Citation

  • Amiri, Abdolreza & Cordero, Alicia & Taghi Darvishi, M. & Torregrosa, Juan R., 2018. "Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 43-57.
  • Handle: RePEc:eee:apmaco:v:323:y:2018:i:c:p:43-57
    DOI: 10.1016/j.amc.2017.11.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317308226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.11.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cordero, Alicia & Gutiérrez, José M. & Magreñán, Á. Alberto & Torregrosa, Juan R., 2016. "Stability analysis of a parametric family of iterative methods for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 26-40.
    2. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2016. "A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 120-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Abdolreza & Argyros, Ioannis K., 2021. "On the approximation of mth power divided differences preserving the local order of convergence," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    2. Francisco I. Chicharro & Alicia Cordero & Neus Garrido & Juan R. Torregrosa, 2019. "Generalized High-Order Classes for Solving Nonlinear Systems and Their Applications," Mathematics, MDPI, vol. 7(12), pages 1-14, December.
    3. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi, 2021. "Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    4. Francisco I. Chicharro & Rafael A. Contreras & Neus Garrido, 2020. "A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions," Mathematics, MDPI, vol. 8(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi, 2021. "Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    2. Cristina Amorós & Ioannis K. Argyros & Á. Alberto Magreñán & Samundra Regmi & Rubén González & Juan Antonio Sicilia, 2019. "Extending the Applicability of Stirling’s Method," Mathematics, MDPI, vol. 8(1), pages 1-10, December.
    3. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    4. Saima Akram & Fiza Zafar & Nusrat Yasmin, 2019. "An Optimal Eighth-Order Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(8), pages 1-14, July.
    5. Ramandeep Behl & Ioannis K. Argyros & Michael Argyros & Mehdi Salimi & Arwa Jeza Alsolami, 2020. "An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence," Mathematics, MDPI, vol. 8(9), pages 1-21, August.
    6. Deepak Kumar & Janak Raj Sharma & Clemente Cesarano, 2019. "One-Point Optimal Family of Multiple Root Solvers of Second-Order," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    7. Alicia Cordero & Beny Neta & Juan R. Torregrosa, 2021. "Memorizing Schröder’s Method as an Efficient Strategy for Estimating Roots of Unknown Multiplicity," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    8. Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    9. Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    10. Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
    11. Campos, B. & Vindel, P., 2021. "Dynamics of subfamilies of Ostrowski–Chun methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 57-81.
    12. Vázquez-Lozano, J. Enrique & Cordero, Alicia & Torregrosa, Juan R., 2018. "Dynamical analysis on cubic polynomials of Damped Traub’s method for approximating multiple roots," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 82-99.
    13. Cristina Amorós & Ioannis K. Argyros & Daniel González & Ángel Alberto Magreñán & Samundra Regmi & Íñigo Sarría, 2020. "New Improvement of the Domain of Parameters for Newton’s Method," Mathematics, MDPI, vol. 8(1), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:323:y:2018:i:c:p:43-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.