IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v328y2018icp82-99.html
   My bibliography  Save this article

Dynamical analysis on cubic polynomials of Damped Traub’s method for approximating multiple roots

Author

Listed:
  • Vázquez-Lozano, J. Enrique
  • Cordero, Alicia
  • Torregrosa, Juan R.

Abstract

In this paper, the performance of a parametric family including Newton’s and Traub’s schemes on multiple roots is analyzed. The local order of convergence on nonlinear equations with multiple roots is studied as well as the dynamical behavior in terms of the damping parameter on cubic polynomials with multiple roots. The fixed and critical points, and the associated parameter plane are some of the characteristic dynamical features of the family which are obtained in this work. From the analysis of these elements we identify members of the family of methods with good numerical properties in terms of stability and efficiency both for finding the simple and multiple roots, and also other ones with very unstable behavior.

Suggested Citation

  • Vázquez-Lozano, J. Enrique & Cordero, Alicia & Torregrosa, Juan R., 2018. "Dynamical analysis on cubic polynomials of Damped Traub’s method for approximating multiple roots," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 82-99.
  • Handle: RePEc:eee:apmaco:v:328:y:2018:i:c:p:82-99
    DOI: 10.1016/j.amc.2018.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630031830064X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cordero, Alicia & Ferrero, Alfredo & Torregrosa, Juan R., 2016. "Damped Traub’s method: Convergence and stability," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 57-68.
    2. Geum, Young Hee & Kim, Young Ik & Neta, Beny, 2016. "A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 120-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Ignacio Extreminana-Aldana & José Manuel Gutiérrez-Jiménez & Luis Javier Hernández-Paricio & María Teresa Rivas-Rodríguéz, 2021. "A Graphic Method for Detecting Multiple Roots Based on Self-Maps of the Hopf Fibration and Nullity Tolerances," Mathematics, MDPI, vol. 9(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    2. Saima Akram & Fiza Zafar & Nusrat Yasmin, 2019. "An Optimal Eighth-Order Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(8), pages 1-14, July.
    3. Ramandeep Behl & Ioannis K. Argyros & Michael Argyros & Mehdi Salimi & Arwa Jeza Alsolami, 2020. "An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence," Mathematics, MDPI, vol. 8(9), pages 1-21, August.
    4. Deepak Kumar & Janak Raj Sharma & Clemente Cesarano, 2019. "One-Point Optimal Family of Multiple Root Solvers of Second-Order," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
    5. Alicia Cordero & Beny Neta & Juan R. Torregrosa, 2021. "Memorizing Schröder’s Method as an Efficient Strategy for Estimating Roots of Unknown Multiplicity," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    6. Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    7. Amiri, Abdolreza & Cordero, Alicia & Taghi Darvishi, M. & Torregrosa, Juan R., 2018. "Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 43-57.
    8. Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
    9. Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
    10. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi, 2021. "Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence," Mathematics, MDPI, vol. 9(12), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:328:y:2018:i:c:p:82-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.