IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v181y2021icp57-81.html
   My bibliography  Save this article

Dynamics of subfamilies of Ostrowski–Chun methods

Author

Listed:
  • Campos, B.
  • Vindel, P.

Abstract

In this paper, we classify the fixed and critical points of the bi-parametric family of Ostrowski–Chun methods applied on quadratic polynomials. We obtain the values of the parameters that reduce the number of free critical points.

Suggested Citation

  • Campos, B. & Vindel, P., 2021. "Dynamics of subfamilies of Ostrowski–Chun methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 57-81.
  • Handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:57-81
    DOI: 10.1016/j.matcom.2020.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cordero, Alicia & Gutiérrez, José M. & Magreñán, Á. Alberto & Torregrosa, Juan R., 2016. "Stability analysis of a parametric family of iterative methods for solving nonlinear models," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 26-40.
    2. Behl, Ramandeep & Cordero, Alicia & Motsa, Sandile S. & Torregrosa, Juan R., 2015. "Construction of fourth-order optimal families of iterative methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 89-101.
    3. Young Ik Kim & Young Hee Geum, 2014. "A New Biparametric Family of Two-Point Optimal Fourth-Order Multiple-Root Finders," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Amorós & Ioannis K. Argyros & Á. Alberto Magreñán & Samundra Regmi & Rubén González & Juan Antonio Sicilia, 2019. "Extending the Applicability of Stirling’s Method," Mathematics, MDPI, vol. 8(1), pages 1-10, December.
    2. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    3. Zhanlav, T. & Chuluunbaatar, O. & Ulziibayar, V., 2017. "Generating function method for constructing new iterations," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 414-423.
    4. Petković, I. & Herceg, Ð., 2017. "Symbolic computation and computer graphics as tools for developing and studying new root-finding methods," Applied Mathematics and Computation, Elsevier, vol. 295(C), pages 95-113.
    5. Amiri, Abdolreza & Cordero, Alicia & Taghi Darvishi, M. & Torregrosa, Juan R., 2018. "Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 43-57.
    6. van Lith, Bart S. & ten Thije Boonkkamp, Jan H.M. & IJzerman, Wilbert L., 2018. "Full linear multistep methods as root-finders," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 190-201.
    7. Ramandeep Behl & Ioannis K. Argyros & Fouad Othman Mallawi, 2021. "Some High-Order Convergent Iterative Procedures for Nonlinear Systems with Local Convergence," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    8. Cristina Amorós & Ioannis K. Argyros & Daniel González & Ángel Alberto Magreñán & Samundra Regmi & Íñigo Sarría, 2020. "New Improvement of the Domain of Parameters for Newton’s Method," Mathematics, MDPI, vol. 8(1), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:57-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.