IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2023i1p83-d1307766.html
   My bibliography  Save this article

A Novel Approach to Modeling Incommensurate Fractional Order Systems Using Fractional Neural Networks

Author

Listed:
  • Meshach Kumar

    (FraCAL Lab., The University of the South Pacific, Laucala Campus, Suva 1168, Fiji)

  • Utkal Mehta

    (FraCAL Lab., The University of the South Pacific, Laucala Campus, Suva 1168, Fiji)

  • Giansalvo Cirrincione

    (Lab. LTI, University of Picardie Jules Verne, 80000 Amiens, France)

Abstract

This research explores the application of the Riemann–Liouville fractional sigmoid, briefly R L F σ , activation function in modeling the chaotic dynamics of Chua’s circuit through Multilayer Perceptron (MLP) architecture. Grounded in the context of chaotic systems, the study aims to address the limitations of conventional activation functions in capturing complex relationships within datasets. Employing a structured approach, the methods involve training MLP models with various activation functions, including R L F σ , sigmoid, swish, and proportional Caputo derivative P C σ , and subjecting them to rigorous comparative analyses. The main findings reveal that the proposed R L F σ consistently outperforms traditional counterparts, exhibiting superior accuracy, reduced Mean Squared Error, and faster convergence. Notably, the study extends its investigation to scenarios with reduced dataset sizes and network parameter reductions, demonstrating the robustness and adaptability of R L F σ . The results, supported by convergence curves and CPU training times, underscore the efficiency and practical applicability of the proposed activation function. This research contributes a new perspective on enhancing neural network architectures for system modeling, showcasing the potential of R L F σ in real-world applications.

Suggested Citation

  • Meshach Kumar & Utkal Mehta & Giansalvo Cirrincione, 2023. "A Novel Approach to Modeling Incommensurate Fractional Order Systems Using Fractional Neural Networks," Mathematics, MDPI, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:83-:d:1307766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/1/83/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/1/83/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maroli, John M., 2023. "Generating discrete dynamical system equations from input–output data using neural network identification models," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Edmundo Capelas de Oliveira & José António Tenreiro Machado, 2014. "A Review of Definitions for Fractional Derivatives and Integral," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiushuang Wang & Run Xu, 2022. "On Hilfer Generalized Proportional Nabla Fractional Difference Operators," Mathematics, MDPI, vol. 10(15), pages 1-16, July.
    2. Jacek Gulgowski & Tomasz P. Stefański & Damian Trofimowicz, 2020. "On Applications of Elements Modelled by Fractional Derivatives in Circuit Theory," Energies, MDPI, vol. 13(21), pages 1-17, November.
    3. Yin, Xiuxian & He, Wei & Cao, You & Ma, Ning & Zhou, Guohui & Li, Hongyu, 2024. "A new health state assessment method based on interpretable belief rule base with bimetric balance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Aneesh S. Deogan & Roeland Dilz & Diego Caratelli, 2024. "On the Application of Fractional Derivative Operator Theory to the Electromagnetic Modeling of Frequency Dispersive Media," Mathematics, MDPI, vol. 12(7), pages 1-17, March.
    5. Torres-Hernandez, A. & Brambila-Paz, F. & Montufar-Chaveznava, R., 2022. "Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    6. Mudassir Shams & Bruno Carpentieri, 2023. "On Highly Efficient Fractional Numerical Method for Solving Nonlinear Engineering Models," Mathematics, MDPI, vol. 11(24), pages 1-30, December.
    7. Shahid Saleem & Shahbaz Ahmad & Junseok Kim, 2023. "Total Fractional-Order Variation-Based Constraint Image Deblurring Problem," Mathematics, MDPI, vol. 11(13), pages 1-26, June.
    8. Hamid, Muhammad & Usman, Muhammad & Haq, Rizwan Ul & Tian, Zhenfu, 2021. "A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    9. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    10. Calatayud, Julia & Jornet, Marc & Pinto, Carla M.A., 2024. "On the interpretation of Caputo fractional compartmental models," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    11. Sergio Adriani David & Carlos Alberto Valentim, 2015. "Fractional Euler-Lagrange Equations Applied to Oscillatory Systems," Mathematics, MDPI, vol. 3(2), pages 1-15, April.
    12. Panda, Sumati Kumari & Vijayakumar, Velusamy, 2023. "Results on finite time stability of various fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Daniele Mortari, 2023. "Representation of Fractional Operators Using the Theory of Functional Connections," Mathematics, MDPI, vol. 11(23), pages 1-16, November.
    14. Machado, J. A. Tenreiro & Lopes, António M., 2016. "The N-link pendulum: Embedding nonlinear dynamics into the multidimensional scaling method," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 130-138.
    15. Ayşegül Daşcıoğlu & Serpil Salınan, 2019. "Comparison of the Orthogonal Polynomial Solutions for Fractional Integral Equations," Mathematics, MDPI, vol. 7(1), pages 1-10, January.
    16. Maria de Jesus Estudillo-Ayala & Hugo Aguirre-Ramos & Juan Gabriel Avina-Cervantes & Jorge Mario Cruz-Duarte & Ivan Cruz-Aceves & Jose Ruiz-Pinales, 2020. "Algorithmic Analysis of Vesselness and Blobness for Detecting Retinopathies Based on Fractional Gaussian Filters," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    17. Lashkin, Volodymyr M. & Cheremnykh, Oleg K., 2024. "Three-dimensional solitons in fractional nonlinear Schrödinger equation with exponential saturating nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    18. Manuel D. Ortigueira, 2022. "A New Look at the Initial Condition Problem," Mathematics, MDPI, vol. 10(10), pages 1-17, May.
    19. Duarte Valério & Manuel D. Ortigueira & António M. Lopes, 2022. "How Many Fractional Derivatives Are There?," Mathematics, MDPI, vol. 10(5), pages 1-18, February.
    20. Mohra Zayed & Mahmoud Abul-Ez & Mohamed Abdalla & Nasser Saad, 2020. "On the Fractional Order Rodrigues Formula for the Shifted Legendre-Type Matrix Polynomials," Mathematics, MDPI, vol. 8(1), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:83-:d:1307766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.