IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p827-d360275.html
   My bibliography  Save this article

Modified King’s Family for Multiple Zeros of Scalar Nonlinear Functions

Author

Listed:
  • Ramandeep Behl

    (Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    These authors contributed equally to this work.)

  • Munish Kansal

    (School of Mathematics, Thapar Institute of Engineering and Technology, Patiala 147004, India
    These authors contributed equally to this work.)

  • Mehdi Salimi

    (DiGiES & Decisions Lab, University Mediterranea of Reggio Calabria, 89125 Reggio Calabria, Italy
    These authors contributed equally to this work.)

Abstract

There is no doubt that there is plethora of optimal fourth-order iterative approaches available to estimate the simple zeros of nonlinear functions. We can extend these method/methods for multiple zeros but the main issue is to preserve the same convergence order. Therefore, numerous optimal and non-optimal modifications have been introduced in the literature to preserve the order of convergence. Such count of methods that can estimate the multiple zeros are limited in the scientific literature. With this point, a new optimal fourth-order scheme is presented for multiple zeros with known multiplicity. The proposed scheme is based on the weight function strategy involving functions in ratio. Moreover, the scheme is optimal as it satisfies the hypothesis of Kung–Traub conjecture. An exhaustive study of the convergence is shown to determine the fourth order of the methods under certain conditions. To demonstrate the validity and appropriateness for the proposed family, several numerical experiments have been performed. The numerical comparison highlights the effectiveness of scheme in terms of accuracy, stability, and CPU time.

Suggested Citation

  • Ramandeep Behl & Munish Kansal & Mehdi Salimi, 2020. "Modified King’s Family for Multiple Zeros of Scalar Nonlinear Functions," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:827-:d:360275
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/827/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/827/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behl, Ramandeep & Cordero, Alicia & Motsa, S.S. & Torregrosa, Juan R., 2015. "On developing fourth-order optimal families of methods for multiple roots and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 520-532.
    2. Sharifi, Somayeh & Salimi, Mehdi & Siegmund, Stefan & Lotfi, Taher, 2016. "A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 69-90.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramandeep Behl & Arwa Jeza Alsolami & Bruno Antonio Pansera & Waleed M. Al-Hamdan & Mehdi Salimi & Massimiliano Ferrara, 2019. "A New Optimal Family of Schröder’s Method for Multiple Zeros," Mathematics, MDPI, vol. 7(11), pages 1-14, November.
    2. Young Hee Geum & Young Ik Kim, 2019. "On Locating and Counting Satellite Components Born along the Stability Circle in the Parameter Space for a Family of Jarratt-Like Iterative Methods," Mathematics, MDPI, vol. 7(9), pages 1-16, September.
    3. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    4. Samundra Regmi & Ioannis K. Argyros & Santhosh George, 2024. "Convergence of High-Order Derivative-Free Algorithms for the Iterative Solution of Systems of Not Necessarily Differentiable Equations," Mathematics, MDPI, vol. 12(5), pages 1-13, February.
    5. Min-Young Lee & Young Ik Kim, 2020. "Bifurcations along the Boundary Curves of Red Fixed Components in the Parameter Space for Uniparametric, Jarratt-Type Simple-Root Finders," Mathematics, MDPI, vol. 8(1), pages 1-13, January.
    6. Daniele Tommasini & David N. Olivieri, 2020. "Fast Switch and Spline Function Inversion Algorithm with Multistep Optimization and k-Vector Search for Solving Kepler’s Equation in Celestial Mechanics," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    7. Moin-ud-Din Junjua & Fiza Zafar & Nusrat Yasmin, 2019. "Optimal Derivative-Free Root Finding Methods Based on Inverse Interpolation," Mathematics, MDPI, vol. 7(2), pages 1-10, February.
    8. Vinay Kanwar & Puneet Sharma & Ioannis K. Argyros & Ramandeep Behl & Christopher Argyros & Ali Ahmadian & Mehdi Salimi, 2021. "Geometrically Constructed Family of the Simple Fixed Point Iteration Method," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
    9. Ramandeep Behl & Sonia Bhalla & Eulalia Martínez & Majed Aali Alsulami, 2021. "Derivative-Free King’s Scheme for Multiple Zeros of Nonlinear Functions," Mathematics, MDPI, vol. 9(11), pages 1-14, May.
    10. Francisco I. Chicharro & Rafael A. Contreras & Neus Garrido, 2020. "A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
    11. Young Hee Geum & Young Ik Kim, 2020. "Computational Bifurcations Occurring on Red Fixed Components in the λ -Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    12. Geum, Young Hee & Kim, Young Ik & Magreñán, Á. Alberto, 2016. "A biparametric extension of King’s fourth-order methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 254-275.
    13. Syahmi Afandi Sariman & Ishak Hashim & Faieza Samat & Mohammed Alshbool, 2021. "Modification of Newton-Househölder Method for Determining Multiple Roots of Unknown Multiplicity of Nonlinear Equations," Mathematics, MDPI, vol. 9(9), pages 1-12, April.
    14. Ramandeep Behl & Sonia Bhalla & Ángel Alberto Magreñán & Alejandro Moysi, 2021. "An Optimal Derivative Free Family of Chebyshev–Halley’s Method for Multiple Zeros," Mathematics, MDPI, vol. 9(5), pages 1-19, March.
    15. Abhimanyu Kumar & Dharmendra K. Gupta & Eulalia Martínez & Sukhjit Singh, 2018. "Convergence of a Two-Step Iterative Method for Nondifferentiable Operators in Banach Spaces," Complexity, Hindawi, vol. 2018, pages 1-11, May.
    16. Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    17. Lee, Min-Young & Ik Kim, Young & Alberto Magreñán, Á., 2017. "On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 564-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:827-:d:360275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.