IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i5p546-d510892.html
   My bibliography  Save this article

An Optimal Derivative Free Family of Chebyshev–Halley’s Method for Multiple Zeros

Author

Listed:
  • Ramandeep Behl

    (Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    All authors contributed equally to this work.)

  • Sonia Bhalla

    (Department of Mathematics, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
    All authors contributed equally to this work.)

  • Ángel Alberto Magreñán

    (Department of Mathematics and Mathematics, University of La Rioja, Madre de Dios 53, 26006 Logroño (La Rioja), Spain
    All authors contributed equally to this work.)

  • Alejandro Moysi

    (Department of Mathematics and Mathematics, University of La Rioja, Madre de Dios 53, 26006 Logroño (La Rioja), Spain
    All authors contributed equally to this work.)

Abstract

In this manuscript, we introduce the higher-order optimal derivative-free family of Chebyshev–Halley’s iterative technique to solve the nonlinear equation having the multiple roots. The designed scheme makes use of the weight function and one parameter α to achieve the fourth-order of convergence. Initially, the convergence analysis is performed for particular values of multiple roots. Afterward, it concludes in general. Moreover, the effectiveness of the presented methods are certified on some applications of nonlinear equations and compared with the earlier derivative and derivative-free schemes. The obtained results depict better performance than the existing methods.

Suggested Citation

  • Ramandeep Behl & Sonia Bhalla & Ángel Alberto Magreñán & Alejandro Moysi, 2021. "An Optimal Derivative Free Family of Chebyshev–Halley’s Method for Multiple Zeros," Mathematics, MDPI, vol. 9(5), pages 1-19, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:546-:d:510892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/5/546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/5/546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behl, Ramandeep & Cordero, Alicia & Motsa, S.S. & Torregrosa, Juan R., 2015. "On developing fourth-order optimal families of methods for multiple roots and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 520-532.
    2. Lotfi, T. & Magreñán, Á.A. & Mahdiani, K. & Javier Rainer, J., 2015. "A variant of Steffensen–King’s type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 347-353.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young Hee Geum & Young Ik Kim, 2019. "On Locating and Counting Satellite Components Born along the Stability Circle in the Parameter Space for a Family of Jarratt-Like Iterative Methods," Mathematics, MDPI, vol. 7(9), pages 1-16, September.
    2. Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
    3. Samundra Regmi & Ioannis K. Argyros & Santhosh George, 2024. "Convergence of High-Order Derivative-Free Algorithms for the Iterative Solution of Systems of Not Necessarily Differentiable Equations," Mathematics, MDPI, vol. 12(5), pages 1-13, February.
    4. Min-Young Lee & Young Ik Kim, 2020. "Bifurcations along the Boundary Curves of Red Fixed Components in the Parameter Space for Uniparametric, Jarratt-Type Simple-Root Finders," Mathematics, MDPI, vol. 8(1), pages 1-13, January.
    5. Ramandeep Behl & Sonia Bhalla & Eulalia Martínez & Majed Aali Alsulami, 2021. "Derivative-Free King’s Scheme for Multiple Zeros of Nonlinear Functions," Mathematics, MDPI, vol. 9(11), pages 1-14, May.
    6. Francisco I. Chicharro & Rafael A. Contreras & Neus Garrido, 2020. "A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
    7. Young Hee Geum & Young Ik Kim, 2020. "Computational Bifurcations Occurring on Red Fixed Components in the λ -Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    8. Geum, Young Hee & Kim, Young Ik & Magreñán, Á. Alberto, 2016. "A biparametric extension of King’s fourth-order methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 254-275.
    9. Ramandeep Behl & Munish Kansal & Mehdi Salimi, 2020. "Modified King’s Family for Multiple Zeros of Scalar Nonlinear Functions," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    10. Abhimanyu Kumar & Dharmendra K. Gupta & Eulalia Martínez & Sukhjit Singh, 2018. "Convergence of a Two-Step Iterative Method for Nondifferentiable Operators in Banach Spaces," Complexity, Hindawi, vol. 2018, pages 1-11, May.
    11. Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
    12. Cristina Amorós & Ioannis K. Argyros & Daniel González & Ángel Alberto Magreñán & Samundra Regmi & Íñigo Sarría, 2020. "New Improvement of the Domain of Parameters for Newton’s Method," Mathematics, MDPI, vol. 8(1), pages 1-12, January.
    13. Lee, Min-Young & Ik Kim, Young & Alberto Magreñán, Á., 2017. "On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 564-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:546-:d:510892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.