IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v486y2025ics0096300324005198.html
   My bibliography  Save this article

Efficient finite element strategy using enhanced high-order and second-derivative-free variants of Newton's method

Author

Listed:
  • Laadhari, Aymen
  • Temimi, Helmi

Abstract

In this work, we propose a stable finite element approximation by extending higher-order Newton's method to the multidimensional case for solving nonlinear systems of partial differential equations. This approach relies solely on the evaluation of Jacobian matrices and residuals, eliminating the need for computing higher-order derivatives. Achieving third and fifth-order convergence, it ensures stability and allows for significantly larger time steps compared to explicit methods. We thoroughly address accuracy and convergence, focusing on the singular p-Laplacian problem and the time-dependent lid-driven cavity benchmark. A globalized variant incorporating a continuation technique is employed to effectively handle high Reynolds number regimes. Through two-dimensional and three-dimensional numerical experiments, we demonstrate that the improved cubically convergent variant outperforms others, leading to substantial computational savings, notably halving the computational cost for the lid-driven cavity test at large Reynolds numbers.

Suggested Citation

  • Laadhari, Aymen & Temimi, Helmi, 2025. "Efficient finite element strategy using enhanced high-order and second-derivative-free variants of Newton's method," Applied Mathematics and Computation, Elsevier, vol. 486(C).
  • Handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324005198
    DOI: 10.1016/j.amc.2024.129058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324005198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324005198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.