On Locating and Counting Satellite Components Born along the Stability Circle in the Parameter Space for a Family of Jarratt-Like Iterative Methods
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Geum, Young Hee & Kim, Young Ik & Magreñán, Á. Alberto, 2016. "A biparametric extension of King’s fourth-order methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 254-275.
- Young Ik Kim & Young Hee Geum, 2013. "A Two-Parameter Family of Fourth-Order Iterative Methods with Optimal Convergence for Multiple Zeros," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-7, February.
- Behl, Ramandeep & Cordero, Alicia & Motsa, S.S. & Torregrosa, Juan R., 2015. "On developing fourth-order optimal families of methods for multiple roots and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 520-532.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Min-Young Lee & Young Ik Kim, 2020. "Bifurcations along the Boundary Curves of Red Fixed Components in the Parameter Space for Uniparametric, Jarratt-Type Simple-Root Finders," Mathematics, MDPI, vol. 8(1), pages 1-13, January.
- Young Hee Geum & Young Ik Kim, 2020. "Computational Bifurcations Occurring on Red Fixed Components in the λ -Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
- Fiza Zafar & Alicia Cordero & Juan R. Torregrosa, 2018. "An Efficient Family of Optimal Eighth-Order Multiple Root Finders," Mathematics, MDPI, vol. 6(12), pages 1-16, December.
- Samundra Regmi & Ioannis K. Argyros & Santhosh George, 2024. "Convergence of High-Order Derivative-Free Algorithms for the Iterative Solution of Systems of Not Necessarily Differentiable Equations," Mathematics, MDPI, vol. 12(5), pages 1-13, February.
- Ramandeep Behl & Sonia Bhalla & Eulalia Martínez & Majed Aali Alsulami, 2021. "Derivative-Free King’s Scheme for Multiple Zeros of Nonlinear Functions," Mathematics, MDPI, vol. 9(11), pages 1-14, May.
- Francisco I. Chicharro & Rafael A. Contreras & Neus Garrido, 2020. "A Family of Multiple-Root Finding Iterative Methods Based on Weight Functions," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
- Min-Young Lee & Young Ik Kim & Beny Neta, 2019. "A Generic Family of Optimal Sixteenth-Order Multiple-Root Finders and Their Dynamics Underlying Purely Imaginary Extraneous Fixed Points," Mathematics, MDPI, vol. 7(6), pages 1-26, June.
- Young Hee Geum & Young Ik Kim & Beny Neta, 2018. "Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics," Mathematics, MDPI, vol. 7(1), pages 1-32, December.
- Geum, Young Hee & Kim, Young Ik & Magreñán, Á. Alberto, 2016. "A biparametric extension of King’s fourth-order methods and their dynamics," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 254-275.
- Ramandeep Behl & Sonia Bhalla & Ángel Alberto Magreñán & Alejandro Moysi, 2021. "An Optimal Derivative Free Family of Chebyshev–Halley’s Method for Multiple Zeros," Mathematics, MDPI, vol. 9(5), pages 1-19, March.
- Young-Hee Geum & Young-Ik Kim, 2021. "Computational Geometry of Period-3 Hyperbolic Components in the Mandelbrot Set," Mathematics, MDPI, vol. 9(19), pages 1-15, October.
- Ramandeep Behl & Munish Kansal & Mehdi Salimi, 2020. "Modified King’s Family for Multiple Zeros of Scalar Nonlinear Functions," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
- Cordero, Alicia & Soleymani, Fazlollah & Torregrosa, Juan R. & Haghani, F. Khaksar, 2017. "A family of Kurchatov-type methods and its stability," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 264-279.
- Abhimanyu Kumar & Dharmendra K. Gupta & Eulalia Martínez & Sukhjit Singh, 2018. "Convergence of a Two-Step Iterative Method for Nondifferentiable Operators in Banach Spaces," Complexity, Hindawi, vol. 2018, pages 1-11, May.
- Ramandeep Behl & Eulalia Martínez & Fabricio Cevallos & Diego Alarcón, 2019. "A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots," Mathematics, MDPI, vol. 7(4), pages 1-12, April.
- Lee, Min-Young & Ik Kim, Young & Alberto Magreñán, Á., 2017. "On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 564-590.
More about this item
Keywords
parameter space; Möbius map; bifurcation point; Jarratt’s method; Farey sequence; conjugacy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:9:p:839-:d:266168. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.