IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v72y2007i2p181-198.html
   My bibliography  Save this article

Fuzzy Clusterwise Generalized Structured Component Analysis

Author

Listed:
  • Heungsun Hwang
  • Wayne Desarbo
  • Yoshio Takane

Abstract

No abstract is available for this item.

Suggested Citation

  • Heungsun Hwang & Wayne Desarbo & Yoshio Takane, 2007. "Fuzzy Clusterwise Generalized Structured Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 181-198, June.
  • Handle: RePEc:spr:psycho:v:72:y:2007:i:2:p:181-198
    DOI: 10.1007/s11336-005-1314-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-005-1314-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-005-1314-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roubens, Marc, 1982. "Fuzzy clustering algorithms and their cluster validity," European Journal of Operational Research, Elsevier, vol. 10(3), pages 294-301, July.
    2. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    3. Venkatram Ramaswamy & Wayne S. Desarbo & David J. Reibstein & William T. Robinson, 1993. "An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data," Marketing Science, INFORMS, vol. 12(1), pages 103-124.
    4. Heungsun Hwang & Yoshio Takane, 2004. "Generalized structured component analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 81-99, March.
    5. Kamel Jedidi & Harsharanjeet S. Jagpal & Wayne S. DeSarbo, 1997. "Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity," Marketing Science, INFORMS, vol. 16(1), pages 39-59.
    6. R. Bock & Rolf Bargmann, 1966. "Analysis of covariance structures," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 507-534, December.
    7. Willem Heiser & Patrick Groenen, 1997. "Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 63-83, March.
    8. Forrest Young, 1981. "Quantitative analysis of qualitative data," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 357-388, December.
    9. P. Bentler & David Weeks, 1980. "Linear structural equations with latent variables," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 289-308, September.
    10. William Meredith & John Tisak, 1990. "Latent curve analysis," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 107-122, March.
    11. Wagner A. Kamakura & Byung-Do Kim & Jonathan Lee, 1996. "Modeling Preference and Structural Heterogeneity in Consumer Choice," Marketing Science, INFORMS, vol. 15(2), pages 152-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari & Dario Lallo, 2013. "Noise fuzzy clustering of time series by autoregressive metric," METRON, Springer;Sapienza Università di Roma, vol. 71(3), pages 217-243, November.
    2. Naoto Yamashita & Shin-ichi Mayekawa, 2015. "A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 243-266, September.
    3. Stéphanie Bougeard & Hervé Abdi & Gilbert Saporta & Ndèye Niang, 2018. "Clusterwise analysis for multiblock component methods," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 285-313, June.
    4. Xavier Bry & Ndèye Niang & Thomas Verron & Stéphanie Bougeard, 2023. "Clusterwise elastic-net regression based on a combined information criterion," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 75-107, March.
    5. Sergio Lagoa & Abdul Suleman, 2014. "Types of financial institution and their supply of financial services: the case of microfinance in Europe," Working papers wpaper72, Financialisation, Economy, Society & Sustainable Development (FESSUD) Project.
    6. Kwanghee Jung & Yoshio Takane & Heungsun Hwang & Todd Woodward, 2012. "Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 827-848, October.
    7. Pierpaolo D'Urso & Girish Prayag & Marta Disegna & Riccardo Massari, 2013. "Market Segmentation using Bagged Fuzzy C–Means (BFCM): Destination Image of Western Europe among Chinese Travellers," BEMPS - Bozen Economics & Management Paper Series BEMPS13, Faculty of Economics and Management at the Free University of Bozen.
    8. Alaimo, Leonardo Salvatore & Nigri, Andrea, 2024. "The gender gap in life expectancy and lifespan disparity as social risk indicators for international countries: A fuzzy clustering approach," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    9. Pierpaolo D’Urso & Livia Giovanni & Marta Disegna & Riccardo Massari & Vincenzina Vitale, 2021. "A Tourist Segmentation Based on Motivation, Satisfaction and Prior Knowledge with a Socio-Economic Profiling: A Clustering Approach with Mixed Information," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(1), pages 335-360, February.
    10. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    11. Pierpaolo D’Urso & Livia De Giovanni & Riccardo Massari & Francesca G. M. Sica, 2019. "Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 609-650, December.
    12. Heungsun Hwang & Moon-Ho Ho & Jonathan Lee, 2010. "Generalized Structured Component Analysis with Latent Interactions," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 228-242, June.
    13. Renato Coppi & Pierpaolo D’Urso & Paolo Giordani, 2010. "A Fuzzy Clustering Model for Multivariate Spatial Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 54-88, March.
    14. B. Lafuente-Rego & P. D’Urso & J. A. Vilar, 2020. "Robust fuzzy clustering based on quantile autocovariances," Statistical Papers, Springer, vol. 61(6), pages 2393-2448, December.
    15. Minjung Kyung & Ju-Hyun Park & Ji Yeh Choi, 2022. "Bayesian Mixture Model of Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 946-966, September.
    16. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    17. Seohee Park & Seongeun Kim & Ji Hoon Ryoo, 2020. "Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    18. Hye Won Suk & Heungsun Hwang, 2016. "Functional Generalized Structured Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 940-968, December.
    19. Pierpaolo D’Urso & Leonardo Salvatore Alaimo & Livia Giovanni & Riccardo Massari, 2022. "Well-Being in the Italian Regions Over Time," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 599-627, June.
    20. Zhou, Lixing & Takane, Yoshio & Hwang, Heungsun, 2016. "Dynamic GSCANO (Generalized Structured Canonical Correlation Analysis) with applications to the analysis of effective connectivity in functional neuroimaging data," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 93-109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    2. Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
    3. Heungsun Hwang & Marc Tomiuk, 2010. "Fuzzy clusterwise quasi-likelihood generalized linear models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 255-270, December.
    4. Tianyu Tan & Hye Suk & Heungsun Hwang & Jooseop Lim, 2013. "Functional fuzzy clusterwise regression analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 57-82, March.
    5. Casey Codd & Robert Cudeck, 2014. "Nonlinear Random-Effects Mixture Models for Repeated Measures," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 60-83, January.
    6. Marco Guerra & Francesca Bassi & José G. Dias, 2020. "A Multiple-Indicator Latent Growth Mixture Model to Track Courses with Low-Quality Teaching," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 361-381, January.
    7. Yu Ding & Wayne S. DeSarbo & Dominique M. Hanssens & Kamel Jedidi & John G. Lynch & Donald R. Lehmann, 2020. "The past, present, and future of measurement and methods in marketing analysis," Marketing Letters, Springer, vol. 31(2), pages 175-186, September.
    8. Seohee Park & Seongeun Kim & Ji Hoon Ryoo, 2020. "Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    9. Jianan Wu & Wayne DeSarbo & Pu-Ju Chen & Yao-Yi Fu, 2006. "A latent structure factor analytic approach for customer satisfaction measurement," Marketing Letters, Springer, vol. 17(3), pages 221-238, July.
    10. Pietro Lovaglio & Mario Mezzanzanica, 2013. "Classification of longitudinal career paths," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 989-1008, February.
    11. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    12. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    13. Terry Elrod & Gerald Häubl & Steven Tipps, 2012. "Parsimonious Structural Equation Models for Repeated Measures Data, with Application to the Study of Consumer Preferences," Psychometrika, Springer;The Psychometric Society, vol. 77(2), pages 358-387, April.
    14. Koller, Monika & Floh, Arne & Zauner, Alexander & Rusch, Thomas, 2013. "Persuasibility and the self – Investigating heterogeneity among consumers," Australasian marketing journal, Elsevier, vol. 21(2), pages 94-104.
    15. Sarstedt, Marko & Radomir, Lăcrămioara & Moisescu, Ovidiu Ioan & Ringle, Christian M., 2022. "Latent class analysis in PLS-SEM: A review and recommendations for future applications," Journal of Business Research, Elsevier, vol. 138(C), pages 398-407.
    16. Ringle, Christian M., 2006. "Segmentation for path models and unobserved heterogeneity: The finite mixture partial least squares approach," MPRA Paper 10734, University Library of Munich, Germany.
    17. Ana Oliveira-Brochado & Francisco Vitorino Martins, 2008. "Determining the Number of Market Segments Using an Experimental Design," FEP Working Papers 263, Universidade do Porto, Faculdade de Economia do Porto.
    18. Heungsun Hwang & Yoshio Takane, 2004. "Generalized structured component analysis," Psychometrika, Springer;The Psychometric Society, vol. 69(1), pages 81-99, March.
    19. Kenneth A. Bollen & Patrick J. Curran, 2004. "Autoregressive Latent Trajectory (ALT) Models A Synthesis of Two Traditions," Sociological Methods & Research, , vol. 32(3), pages 336-383, February.
    20. Temme, Dirk & Williams, John R. & Hildebrandt, Lutz, 2002. "Structural equation models for finite mixtures: Simulation results and empirical applications," SFB 373 Discussion Papers 2002,33, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:72:y:2007:i:2:p:181-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.