IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v33y2016i1d10.1007_s00357-016-9199-1.html
   My bibliography  Save this article

Power and Sample Size Computation for Wald Tests in Latent Class Models

Author

Listed:
  • Dereje W. Gudicha

    (Tilburg University)

  • Fetene B. Tekle

    (Janssen Pharmaceutica)

  • Jeroen K. Vermunt

    (Tilburg University)

Abstract

Latent class (LC) analysis is used by social, behavioral, and medical science researchers among others as a tool for clustering (or unsupervised classification) with categorical response variables, for analyzing the agreement between multiple raters, for evaluating the sensitivity and specificity of diagnostic tests in the absence of a gold standard, and for modeling heterogeneity in developmental trajectories. Despite the increased popularity of LC analysis, little is known about statistical power and required sample size in LC modeling. This paper shows how to perform power and sample size computations in LC models using Wald tests for the parameters describing association between the categorical latent variable and the response variables. Moreover, the design factors affecting the statistical power of these Wald tests are studied. More specifically, we show how design factors which are specific for LC analysis, such as the number of classes, the class proportions, and the number of response variables, affect the information matrix. The proposed power computation approach is illustrated using realistic scenarios for the design factors. A simulation study conducted to assess the performance of the proposed power analysis procedure shows that it performs well in all situations one may encounter in practice.

Suggested Citation

  • Dereje W. Gudicha & Fetene B. Tekle & Jeroen K. Vermunt, 2016. "Power and Sample Size Computation for Wald Tests in Latent Class Models," Journal of Classification, Springer;The Classification Society, vol. 33(1), pages 30-51, April.
  • Handle: RePEc:spr:jclass:v:33:y:2016:i:1:d:10.1007_s00357-016-9199-1
    DOI: 10.1007/s00357-016-9199-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-016-9199-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-016-9199-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Mitchell Dayton & George Macready, 1976. "A probabilistic model for validation of behavioral hierarchies," Psychometrika, Springer;The Psychometric Society, vol. 41(2), pages 189-204, June.
    2. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    3. Linzer, Drew A. & Lewis, Jeffrey B., 2011. "poLCA: An R Package for Polytomous Variable Latent Class Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 42(i10).
    4. Forcina, Antonio, 2008. "Identifiability of extended latent class models with individual covariates," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5263-5268, August.
    5. Yang, Chih-Chien, 2006. "Evaluating latent class analysis models in qualitative phenotype identification," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1090-1104, February.
    6. Richard McHugh, 1956. "Efficient estimation and local identification in latent class analysis," Psychometrika, Springer;The Psychometric Society, vol. 21(4), pages 331-347, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasia Burkovskaya & Adam Teperski & Kadir Atalay, 2022. "Framing and insurance choices," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(2), pages 311-337, June.
    2. Seohee Park & Seongeun Kim & Ji Hoon Ryoo, 2020. "Latent Class Regression Utilizing Fuzzy Clusterwise Generalized Structured Component Analysis," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    3. Douglas L. Steinley, 2018. "Editorial," Journal of Classification, Springer;The Classification Society, vol. 35(1), pages 1-4, April.
    4. Panayiota Metallidou & Dimitrios Stamovlasis, 2020. "University Students’ Perfectionistic Profiles: Do They Predict Achievement Goal Orientations and Coping Strategies?," Journal of Educational and Developmental Psychology, Canadian Center of Science and Education, vol. 10(2), pages 1-57, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cato Waeterloos & Peter Conradie & Michel Walrave & Koen Ponnet, 2021. "Digital Issue Movements: Political Repertoires and Drivers of Participation among Belgian Youth in the Context of ‘School Strike for Climate’," Sustainability, MDPI, vol. 13(17), pages 1-19, September.
    2. Roberto Colombi & Sabrina Giordano, 2019. "Likelihood-based tests for a class of misspecified finite mixture models for ordinal categorical data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1175-1202, December.
    3. Roberto Colombi & Sabrina Giordano & Gerhard Tutz, 2021. "A Rating Scale Mixture Model to Account for the Tendency to Middle and Extreme Categories," Journal of Educational and Behavioral Statistics, , vol. 46(6), pages 682-716, December.
    4. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    5. Yih-Ing Hser & Haikang Shen & Chih-Ping Chou & Stephen C. Messer & M. Douglas Anglin, 2001. "Analytic Approaches for Assessing Long-Term Treatment Effects," Evaluation Review, , vol. 25(2), pages 233-262, April.
    6. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    7. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    8. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    9. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    10. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    11. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    12. Shelley H. Liu & Yitong Chen & Jordan R. Kuiper & Emily Ho & Jessie P. Buckley & Leah Feuerstahler, 2024. "Applying Latent Variable Models to Estimate Cumulative Exposure Burden to Chemical Mixtures and Identify Latent Exposure Subgroups: A Critical Review and Future Directions," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 482-502, July.
    13. B. Praag & T. Dijkstra & J. Velzen, 1985. "Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 25-36, March.
    14. Reischmann, Markus, 2016. "Creative accounting and electoral motives: Evidence from OECD countries," Journal of Comparative Economics, Elsevier, vol. 44(2), pages 243-257.
    15. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    16. Vassilios Babalos & Mehmet Balcilar & Rangan Gupta, 2014. "Revisiting Herding Behavior in REITs: A Regime-Switching Approach," Working Papers 201448, University of Pretoria, Department of Economics.
    17. Topi Miettinen & Sigrid Suetens, 2008. "Communication and Guilt in a Prisoner's Dilemma," Journal of Conflict Resolution, Peace Science Society (International), vol. 52(6), pages 945-960, December.
    18. Towfiqul Islam Khan & Mashfique Ibne Akbar, 2015. "Illicit Financial Flow in view of Financing the Post-2015 Development Agenda," Southern Voice Occasional Paper 25, Southern Voice.
    19. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    20. Potrafke, Niklas, 2019. "Electoral cycles in perceived corruption: International empirical evidence," Journal of Comparative Economics, Elsevier, vol. 47(1), pages 215-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:33:y:2016:i:1:d:10.1007_s00357-016-9199-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.