IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v284y2020i1d10.1007_s10479-019-03189-z.html
   My bibliography  Save this article

An application of sparse-group lasso regularization to equity portfolio optimization and sector selection

Author

Listed:
  • Jingnan Chen

    (Beihang University)

  • Gengling Dai

    (Singapore University of Technology and Design)

  • Ning Zhang

    (Dongguan University of Technology)

Abstract

In this paper, we propose a modified mean-variance portfolio selection model that incorporates the sparse-group lasso (abbreviated as SGLasso) regularization in machine learning. This new model essentially has three merits: first, it allows investors to incorporate their preference over equity sectors when constructing portfolios; second, it helps investors select sectors based on assets’ past performances as it encourages sparsity among sectors; third, it has stabilizing and sparsifying effect on the entire portfolio. We connect our model to a robust portfolio selection problem, and investigate effects of the SGLasso regularization on the optimal strategy both theoretically and empirically. We develop an efficient algorithm to find the optimal portfolio and prove its global convergence. We demonstrate the efficiency of the algorithm through simulated experiments under large datasets and evaluate the out-of-sample performance of our model via empirical tests across different datasets.

Suggested Citation

  • Jingnan Chen & Gengling Dai & Ning Zhang, 2020. "An application of sparse-group lasso regularization to equity portfolio optimization and sector selection," Annals of Operations Research, Springer, vol. 284(1), pages 243-262, January.
  • Handle: RePEc:spr:annopr:v:284:y:2020:i:1:d:10.1007_s10479-019-03189-z
    DOI: 10.1007/s10479-019-03189-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03189-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03189-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    2. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    3. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    4. Jun-ya Gotoh & Akiko Takeda, 2011. "On the role of norm constraints in portfolio selection," Computational Management Science, Springer, vol. 8(4), pages 323-353, November.
    5. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    6. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    7. Jang Ho Kim & Woo Chang Kim & Do-Gyun Kwon & Frank J. Fabozzi, 2018. "Robust equity portfolio performance," Annals of Operations Research, Springer, vol. 266(1), pages 293-312, July.
    8. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," The Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    9. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni, Xuanming & Zheng, Tiantian & Zhao, Huimin & Zhu, Shushang, 2023. "High-dimensional portfolio optimization based on tree-structured factor model," Pacific-Basin Finance Journal, Elsevier, vol. 81(C).
    2. Hafner, Christian & Wang, Linqi, 2020. "Dynamic portfolio selection with sector-specific regularization," LIDAM Discussion Papers ISBA 2020032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Christis Katsouris, 2021. "Optimal Portfolio Choice and Stock Centrality for Tail Risk Events," Papers 2112.12031, arXiv.org.
    4. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2021. "Sparse factor model based on trend filtering," Annals of Operations Research, Springer, vol. 306(1), pages 321-342, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    2. Giuzio, Margherita & Ferrari, Davide & Paterlini, Sandra, 2016. "Sparse and robust normal and t- portfolios by penalized Lq-likelihood minimization," European Journal of Operational Research, Elsevier, vol. 250(1), pages 251-261.
    3. Harris, Richard D. F. & Mazibas, Murat, 2022. "Portfolio optimization with behavioural preferences and investor memory," European Journal of Operational Research, Elsevier, vol. 296(1), pages 368-387.
    4. Mazin A.M. Al Janabi, 2021. "Is optimum always optimal? A revisit of the mean‐variance method under nonlinear measures of dependence and non‐normal liquidity constraints," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 387-415, April.
    5. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    6. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    7. Vrinda Dhingra & Shiv Kumar Gupta & Amita Sharma, 2023. "Norm constrained minimum variance portfolios with short selling," Computational Management Science, Springer, vol. 20(1), pages 1-35, December.
    8. Peter Nystrup & Stephen Boyd & Erik Lindström & Henrik Madsen, 2019. "Multi-period portfolio selection with drawdown control," Annals of Operations Research, Springer, vol. 282(1), pages 245-271, November.
    9. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    10. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    11. Jang Ho Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2022. "Goal-based investing based on multi-stage robust portfolio optimization," Annals of Operations Research, Springer, vol. 313(2), pages 1141-1158, June.
    12. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    13. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    14. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    15. Mishra, Anil V., 2015. "Measures of equity home bias puzzle," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 293-312.
    16. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    17. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    18. Lassance, Nathan & Vanderveken, Rodolphe & Vrins, Frédéric, 2022. "On the optimal combination of naive and mean-variance portfolio strategies," LIDAM Discussion Papers LFIN 2022006, Université catholique de Louvain, Louvain Finance (LFIN).
    19. Hongseon Kim & Soonbong Lee & Seung Bum Soh & Seongmoon Kim, 2022. "Improving portfolio investment performance with distance‐based portfolio‐combining algorithms," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(4), pages 941-959, December.
    20. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:284:y:2020:i:1:d:10.1007_s10479-019-03189-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.