IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v228y2025icp386-401.html
   My bibliography  Save this article

PDE models for vegetation biomass and autotoxicity

Author

Listed:
  • Abbas, Mudassar
  • Giannino, Francesco
  • Iuorio, Annalisa
  • Ahmad, Zubair
  • Calabró, Francesco

Abstract

Numerical techniques are widely used to simulate population dynamics in space. In vegetation dynamics, these techniques are very useful to investigate how plants grow, compete for resources, and react to environmental factors within the ecosystem. Plant–soil feedback (PSF) refers to the process where plants or a community alter the biotic and abiotic characteristics of soil that affects the growth of plants or community subsequently growing in that soil. During the last three decades, PSF has been recognized as an important driver for the emergence of vegetation patterns. The importance of studying such vegetation patterns is that they provide an insight into potential ecological changes and illustrate the flexibility and resilience of an ecosystem. Despite the fact that water depletion was once thought to be a major factor in the development of vegetation patterns the existence of patterns in ecosystems without water limitations serves as evidence that this is not the case. In this study, we examine how negative plant–soil feedback contributes to the dynamics of plant biomass. We provide a comparison of different reaction–diffusion PDE models explaining the dynamics of plant biomass in the presence of autotoxicity produced by litter decomposition. We introduce different growth terms, including logistic and exponential, along with additional factors such as extra mortality and inhibitor terms, and develop six distinct models to investigate their individual and combined effects on biomass toxicity distribution. By applying appropriate numerical techniques, we solve the proposed reaction–diffusion PDE models in MATLAB to predict the impact of soil toxicity on plant biomass.

Suggested Citation

  • Abbas, Mudassar & Giannino, Francesco & Iuorio, Annalisa & Ahmad, Zubair & Calabró, Francesco, 2025. "PDE models for vegetation biomass and autotoxicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 228(C), pages 386-401.
  • Handle: RePEc:eee:matcom:v:228:y:2025:i:c:p:386-401
    DOI: 10.1016/j.matcom.2024.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475424002544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2024.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuo Liang & Wenlong Wang & Chunrui Zhang, 2024. "Pattern Dynamics Analysis of Host–Parasite Models with Aggregation Effect Based on Coupled Map Lattices," Mathematics, MDPI, vol. 13(1), pages 1-45, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:228:y:2025:i:c:p:386-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.