IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v39y2009i3p1259-1269.html
   My bibliography  Save this article

Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host

Author

Listed:
  • Zhu, Lili
  • Zhao, Min

Abstract

This paper investigates a discrete-time host–parasitoid ecological model with Hassell growth function for the host by qualitative analysis and numerical simulation. Local stability analysis of the system is carried out. Many forms of complex dynamics are observed, including chaotic bands with periodic windows, pitchfork and tangent bifurcations, attractor crises, intermittency, supertransients, and non-unique dynamics (meaning that several attractors coexist). The largest Lyapunov exponents are numerically computed to confirm further the complexity of these dynamic behaviors.

Suggested Citation

  • Zhu, Lili & Zhao, Min, 2009. "Dynamic complexity of a host–parasitoid ecological model with the Hassell growth function for the host," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1259-1269.
  • Handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1259-1269
    DOI: 10.1016/j.chaos.2007.10.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790700896X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.10.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Cailin & Boyce, Mark S., 2005. "Dynamic complexities in a mutual interference host–parasitoid model," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 175-182.
    2. Lv, Songjuan & Zhao, Min, 2008. "The dynamic complexity of a three species food chain model," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1469-1480.
    3. Lv, Songjuan & Zhao, Min, 2008. "The dynamic complexity of a host–parasitoid model with a lower bound for the host," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 911-919.
    4. Liu, Xiaoli & Xiao, Dongmei, 2007. "Complex dynamic behaviors of a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    2. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    3. Zhang, Limin & Zhang, Chaofeng & Zhao, Min, 2014. "Dynamic complexities in a discrete predator–prey system with lower critical point for the prey," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 119-131.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Limin & Zhao, Min, 2009. "Dynamic complexities in a hyperparasitic system with prolonged diapause for host," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1136-1142.
    2. Xiaorong Ma & Qamar Din & Muhammad Rafaqat & Nasir Javaid & Yongliang Feng, 2020. "A Density-Dependent Host-Parasitoid Model with Stability, Bifurcation and Chaos Control," Mathematics, MDPI, vol. 8(4), pages 1-26, April.
    3. Lv, Songjuan & Fang, Zhongmiao, 2009. "The dynamic complexity of a host–parasitoid model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2617-2623.
    4. Yousef, A.M. & Rida, S.Z. & Ali, H.M. & Zaki, A.S., 2023. "Stability, co-dimension two bifurcations and chaos control of a host-parasitoid model with mutual interference," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Zhao, Min & Lv, Songjuan, 2009. "Chaos in a three-species food chain model with a Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2305-2316.
    6. Zhao, Min & Wang, Xitao & Yu, Hengguo & Zhu, Jun, 2012. "Dynamics of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(8), pages 1432-1444.
    7. Yu, Hengguo & Zhong, Shouming & Ye, Mao, 2009. "Dynamic analysis of an ecological model with impulsive control strategy and distributed time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(3), pages 619-632.
    8. Binhao Hong & Chunrui Zhang, 2023. "Neimark–Sacker Bifurcation of a Discrete-Time Predator–Prey Model with Prey Refuge Effect," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    9. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    10. Yu, Hengguo & Zhao, Min & Lv, Songjuan & Zhu, Lili, 2009. "Dynamic complexities in a parasitoid-host-parasitoid ecological model," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 39-48.
    11. Gupta, R.P. & Yadav, Dinesh K., 2023. "Nonlinear dynamics of a stage-structured interacting population model with honest signals and cues," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    12. Zhong, Shihong & Xia, Juandi & Liu, Biao, 2021. "Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Mohammed O. Al-Kaff & Ghada AlNemer & Hamdy A. El-Metwally & Abd-Elalim A. Elsadany & Elmetwally M. Elabbasy, 2024. "Dynamic Behavior and Bifurcation Analysis of a Modified Reduced Lorenz Model," Mathematics, MDPI, vol. 12(9), pages 1-20, April.
    14. Akhtar, S. & Ahmed, R. & Batool, M. & Shah, Nehad Ali & Chung, Jae Dong, 2021. "Stability, bifurcation and chaos control of a discretized Leslie prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    15. Çelik, Canan & Duman, Oktay, 2009. "Allee effect in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1956-1962.
    16. Huang, Tousheng & Zhang, Huayong, 2016. "Bifurcation, chaos and pattern formation in a space- and time-discrete predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 92-107.
    17. Ali Yousef & Fatma Bozkurt Yousef, 2019. "Bifurcation and Stability Analysis of a System of Fractional-Order Differential Equations for a Plant–Herbivore Model with Allee Effect," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    18. Rajni, & Ghosh, Bapan, 2022. "Multistability, chaos and mean population density in a discrete-time predator–prey system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Xiongxiong Du & Xiaoling Han & Ceyu Lei, 2022. "Behavior Analysis of a Class of Discrete-Time Dynamical System with Capture Rate," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
    20. Bozkurt, Fatma & Yousef, Ali & Baleanu, Dumitru & Alzabut, Jehad, 2020. "A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:39:y:2009:i:3:p:1259-1269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.