IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i7p949-d1362396.html
   My bibliography  Save this article

Synchronization Analysis for Quaternion-Valued Delayed Neural Networks with Impulse and Inertia via a Direct Technique

Author

Listed:
  • Juan Yu

    (College of Mathematics and System Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Applied Mathematics, Urumqi 830017, China)

  • Kailong Xiong

    (College of Mathematics and System Science, Xinjiang University, Urumqi 830017, China)

  • Cheng Hu

    (College of Mathematics and System Science, Xinjiang University, Urumqi 830017, China
    Xinjiang Key Laboratory of Applied Mathematics, Urumqi 830017, China)

Abstract

The asymptotic synchronization of quaternion-valued delayed neural networks with impulses and inertia is studied in this article. Firstly, a convergence result on piecewise differentiable functions is developed, which is a generalization of the Barbalat lemma and provides a powerful tool for the convergence analysis of discontinuous systems. To achieve synchronization, a constant gain-based control scheme and an adaptive gain-based control strategy are directly proposed for response quaternion-valued models. In the convergence analysis, a direct analysis method is developed to discuss the synchronization without using the separation technique or reduced-order transformation. In particular, some Lyapunov functionals, composed of the state variables and their derivatives, are directly constructed and some synchronization criteria represented by matrix inequalities are obtained based on quaternion theory. Some numerical results are shown to further confirm the theoretical analysis.

Suggested Citation

  • Juan Yu & Kailong Xiong & Cheng Hu, 2024. "Synchronization Analysis for Quaternion-Valued Delayed Neural Networks with Impulse and Inertia via a Direct Technique," Mathematics, MDPI, vol. 12(7), pages 1-22, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:949-:d:1362396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/7/949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/7/949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeremiah Bill & Lance Champagne & Bruce Cox & Trevor Bihl, 2021. "Meta-Heuristic Optimization Methods for Quaternion-Valued Neural Networks," Mathematics, MDPI, vol. 9(9), pages 1-23, April.
    2. Chang, Shuang & Wang, Yantao & Zhang, Xian & Wang, Xin, 2023. "A new method to study global exponential stability of inertial neural networks with multiple time-varying transmission delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 329-340.
    3. Deng, Hui & Bao, Haibo, 2019. "Fixed-time synchronization of quaternion-valued neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    4. Wei, Xiaofeng & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    5. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    6. Yu Yao & Guodong Zhang & Yan Li, 2023. "Fixed/Preassigned-Time Stabilization for Complex-Valued Inertial Neural Networks with Distributed Delays: A Non-Separation Approach," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    7. Jun Wang & Yongqiang Tian & Lanfeng Hua & Kaibo Shi & Shouming Zhong & Shiping Wen, 2023. "New Results on Finite-Time Synchronization Control of Chaotic Memristor-Based Inertial Neural Networks with Time-Varying Delays," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    8. Jinlong Shu & Lianglin Xiong & Tao Wu & Zixin Liu, 2019. "Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay," Mathematics, MDPI, vol. 7(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Guo & Yanchao Shi & Weihua Luo & Yanzhao Cheng & Shengye Wang, 2023. "Adaptive Global Synchronization for a Class of Quaternion-Valued Cohen-Grossberg Neural Networks with Known or Unknown Parameters," Mathematics, MDPI, vol. 11(16), pages 1-16, August.
    2. Mo, Wenjun & Bao, Haibo, 2022. "Finite-time synchronization for fractional-order quaternion-valued coupled neural networks with saturated impulse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    3. Muhammad Maaruf & Waleed M. Hamanah & Mohammad A. Abido, 2023. "Hybrid Backstepping Control of a Quadrotor Using a Radial Basis Function Neural Network," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    4. Lin Cao & Rongwei Guo, 2022. "Partial Anti-Synchronization Problem of the 4D Financial Hyper-Chaotic System with Periodically External Disturbance," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    5. Ruixia Liu & Lei Xing & Hong Deng & Weichao Zhong, 2023. "Finite-Time Adaptive Fuzzy Control for Unmodeled Dynamical Systems with Actuator Faults," Mathematics, MDPI, vol. 11(9), pages 1-22, May.
    6. Yupeng Shi & Dayong Ye, 2023. "Stability Analysis of Delayed Neural Networks via Composite-Matrix-Based Integral Inequality," Mathematics, MDPI, vol. 11(11), pages 1-13, May.
    7. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    8. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    9. Mairemunisa Abudusaimaiti & Abuduwali Abudukeremu & Amina Sabir, 2023. "Fixed/Preassigned-Time Stochastic Synchronization of Complex-Valued Fuzzy Neural Networks with Time Delay," Mathematics, MDPI, vol. 11(17), pages 1-18, September.
    10. Wenjun Dong & Yujiao Huang & Tingan Chen & Xinggang Fan & Haixia Long, 2022. "Local Lagrange Exponential Stability Analysis of Quaternion-Valued Neural Networks with Time Delays," Mathematics, MDPI, vol. 10(13), pages 1-21, June.
    11. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.
    13. Zhen Yang & Zhengqiu Zhang, 2023. "New Results on Finite-Time Synchronization of Complex-Valued BAM Neural Networks with Time Delays by the Quadratic Analysis Approach," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    14. Yang, Shuai & Hu, Cheng & Yu, Juan & Jiang, Haijun, 2021. "Projective synchronization in finite-time for fully quaternion-valued memristive networks with fractional-order," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    15. Ganesan, Bhuvaneshwari & Annamalai, Manivannan, 2023. "Anti-synchronization analysis of chaotic neural networks using delay product type looped-Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    17. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Arunagirinathan, S. & Lee, T.H., 2024. "Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 109-120.
    19. Shu, Jinlong & Wu, Baowei & Xiong, Lianglin, 2022. "Stochastic stability criteria and event-triggered control of delayed Markovian jump quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    20. Bao, Yuangui & Zhang, Yijun & Zhang, Baoyong, 2021. "Fixed-time synchronization of coupled memristive neural networks via event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 411(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:949-:d:1362396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.