IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v211y2023icp329-340.html
   My bibliography  Save this article

A new method to study global exponential stability of inertial neural networks with multiple time-varying transmission delays

Author

Listed:
  • Chang, Shuang
  • Wang, Yantao
  • Zhang, Xian
  • Wang, Xin

Abstract

In this article, the global exponential stability (GES) of inertial neural networks (INNs) are directly analyzed by proposing a new parameterized method. The parameterized representations of the states of neurons and their derivatives in the considered INNs are first given by introducing the relevant parameters. Furthermore, the sufficient conditions for the GES of the considered INNs are obtained by using the inequality technique. The obtained stability conditions consist of only a few simple linear scalar inequalities (LSIs) which are convenient to solve. Different from the previous works, the derived GES criteria do not involve any model transformation and any Lyapunov–Krasovskii functional (LKF), which reduces the computational complexity and simplifies the theoretical analysis. The last, a numerical simulation is presented to demonstrate the effectiveness of proposed parameterized method.

Suggested Citation

  • Chang, Shuang & Wang, Yantao & Zhang, Xian & Wang, Xin, 2023. "A new method to study global exponential stability of inertial neural networks with multiple time-varying transmission delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 329-340.
  • Handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:329-340
    DOI: 10.1016/j.matcom.2023.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423001623
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chuangxia & Su, Renli & Cao, Jinde & Xiao, Songlin, 2020. "Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 127-135.
    2. Wang, Junlan & Wang, Xin & Wang, Yantao & Zhang, Xian, 2021. "Non-reduced order method to global h-stability criteria for proportional delay high-order inertial neural networks," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    3. Yaning Yu & Ziye Zhang, 2022. "State Estimation for Complex-Valued Inertial Neural Networks with Multiple Time Delays," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    4. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Yu & Kailong Xiong & Cheng Hu, 2024. "Synchronization Analysis for Quaternion-Valued Delayed Neural Networks with Impulse and Inertia via a Direct Technique," Mathematics, MDPI, vol. 12(7), pages 1-22, March.
    2. Arunagirinathan, S. & Lee, T.H., 2024. "Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 109-120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Xianhe & Zhang, Xian & Wang, Yantao, 2023. "Bounded real lemmas and exponential H∞ control for memristor-based neural networks with unbounded time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 66-81.
    2. Zhang, Zhongjie & Yu, Tingting & Zhang, Xian, 2022. "Algebra criteria for global exponential stability of multiple time-varying delay Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    3. Chen, Yonghui & Xue, Yu & Yang, Xiaona & Zhang, Xian, 2023. "A direct analysis method to Lagrangian global exponential stability for quaternion memristive neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    4. Shen, Shiping & Meng, Xiaofang, 2023. "Finite-time stability of almost periodic solutions of Clifford-valued RNNs with time-varying delays and D operator on time scales," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Feifei Yang & Xikui Hu & Guodong Ren & Jun Ma, 2023. "Synchronization and patterns in a memristive network in noisy electric field," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-14, June.
    6. Gao, Jin & Dai, Lihua & Jiang, Hongying, 2023. "Stability analysis of pseudo almost periodic solutions for octonion-valued recurrent neural networks with proportional delay," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    7. Karnan, A. & Nagamani, G., 2022. "Non-fragile state estimation for memristive cellular neural networks with proportional delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 217-231.
    8. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.
    9. Huang, Chuangxia & Liu, Bingwen & Qian, Chaofan & Cao, Jinde, 2021. "Stability on positive pseudo almost periodic solutions of HPDCNNs incorporating D operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1150-1163.
    10. Zihan Zou & Yinfang Song & Chi Zhao, 2022. "Razumikhin Theorems on Polynomial Stability of Neutral Stochastic Pantograph Differential Equations with Markovian Switching," Mathematics, MDPI, vol. 10(17), pages 1-15, August.
    11. Yang, Jinrong & Chen, Guici & Wen, Shiping & Wang, Leimin, 2023. "Finite-time dissipative control for discrete-time memristive neural networks via interval matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    12. Zhang, Hai & Cheng, Yuhong & Zhang, Weiwei & Zhang, Hongmei, 2023. "Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 846-857.
    13. Hualin Song & Cheng Hu & Juan Yu, 2022. "Stability and Synchronization of Fractional-Order Complex-Valued Inertial Neural Networks: A Direct Approach," Mathematics, MDPI, vol. 10(24), pages 1-23, December.
    14. Deng, Yunke & Huang, Chuangxia & Cao, Jinde, 2021. "New results on dynamics of neutral type HCNNs with proportional delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 51-59.
    15. Cheng Peng & Jiaxin Ma & Qiankun Li & Shang Gao, 2022. "Noise-to-State Stability in Probability for Random Complex Dynamical Systems on Networks," Mathematics, MDPI, vol. 10(12), pages 1-11, June.
    16. Wang, Junlan & Wang, Xin & Wang, Yantao & Zhang, Xian, 2021. "Non-reduced order method to global h-stability criteria for proportional delay high-order inertial neural networks," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    17. Syed Ali, M. & Narayanan, G. & Saroha, Sumit & Priya, Bandana & Thakur, Ganesh Kumar, 2021. "Finite-time stability analysis of fractional-order memristive fuzzy cellular neural networks with time delay and leakage term," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 468-485.
    18. Chao Wang & Yinfang Song & Fengjiao Zhang & Yuxiao Zhao, 2023. "Exponential Stability of a Class of Neutral Inertial Neural Networks with Multi-Proportional Delays and Leakage Delays," Mathematics, MDPI, vol. 11(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:329-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.