IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2157-d843756.html
   My bibliography  Save this article

Local Lagrange Exponential Stability Analysis of Quaternion-Valued Neural Networks with Time Delays

Author

Listed:
  • Wenjun Dong

    (College of Zhijiang, Zhejiang University of Technology, Shaoxing 312030, China)

  • Yujiao Huang

    (College of Zhijiang, Zhejiang University of Technology, Shaoxing 312030, China)

  • Tingan Chen

    (College of Zhijiang, Zhejiang University of Technology, Shaoxing 312030, China)

  • Xinggang Fan

    (College of Zhijiang, Zhejiang University of Technology, Shaoxing 312030, China)

  • Haixia Long

    (College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310058, China)

Abstract

This study on the local stability of quaternion-valued neural networks is of great significance to the application of associative memory and pattern recognition. In the research, we study local Lagrange exponential stability of quaternion-valued neural networks with time delays. By separating the quaternion-valued neural networks into a real part and three imaginary parts, separating the quaternion field into 3 4 n subregions, and using the intermediate value theorem, sufficient conditions are proposed to ensure quaternion-valued neural networks have 3 4 n equilibrium points. According to the Halanay inequality, the conditions for the existence of 2 4 n local Lagrange exponentially stable equilibria of quaternion-valued neural networks are established. The obtained stability results improve and extend the existing ones. Under the same conditions, quaternion-valued neural networks have more stable equilibrium points than complex-valued neural networks and real-valued neural networks. The validity of the theoretical results were verified by an example.

Suggested Citation

  • Wenjun Dong & Yujiao Huang & Tingan Chen & Xinggang Fan & Haixia Long, 2022. "Local Lagrange Exponential Stability Analysis of Quaternion-Valued Neural Networks with Time Delays," Mathematics, MDPI, vol. 10(13), pages 1-21, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2157-:d:843756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2157/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2157/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Shuzhan & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Wei, Xiaofeng & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaning Yu & Ziye Zhang, 2022. "State Estimation for Complex-Valued Inertial Neural Networks with Multiple Time Delays," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    2. Pishro, Aboozar & Shahrokhi, Mohammad & Sadeghi, Hamed, 2022. "Fault-tolerant adaptive fractional controller design for incommensurate fractional-order nonlinear dynamic systems subject to input and output restrictions," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Lin Cao & Rongwei Guo, 2022. "Partial Anti-Synchronization Problem of the 4D Financial Hyper-Chaotic System with Periodically External Disturbance," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    4. Baluni, Sapna & Sehgal, Ishani & Yadav, Vijay K. & Das, Subir, 2024. "Exponential synchronization of a class of quaternion-valued neural network with time-varying delays: A Matrix Measure Approach," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Mairemunisa Abudusaimaiti & Abuduwali Abudukeremu & Amina Sabir, 2023. "Fixed/Preassigned-Time Stochastic Synchronization of Complex-Valued Fuzzy Neural Networks with Time Delay," Mathematics, MDPI, vol. 11(17), pages 1-18, September.
    6. Ganesan, Bhuvaneshwari & Annamalai, Manivannan, 2023. "Anti-synchronization analysis of chaotic neural networks using delay product type looped-Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    8. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    9. Cheng, Mengqing & Zhao, Junsheng & Xie, Xiangpeng & Sun, Zong-yao, 2024. "A novel finite-time stability criteria and controller design for nonlinear impulsive systems," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    10. Sri Raja Priyanka, K. & Nagamani, G., 2024. "Non-fragile projective synchronization of delayed discrete-time neural networks via generalized weighted summation inequality," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    11. Zheng, Yi & Wu, Xiaoqun & Fan, Ziye & Wang, Wei, 2022. "Identifying topology and system parameters of fractional-order complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    12. Guo, Runan & Xu, Shengyuan, 2023. "Observer-based sliding mode synchronization control of complex-valued neural networks with inertial term and mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    13. Zhang, Hai & Cheng, Yuhong & Zhang, Weiwei & Zhang, Hongmei, 2023. "Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 846-857.
    14. Hualin Song & Cheng Hu & Juan Yu, 2022. "Stability and Synchronization of Fractional-Order Complex-Valued Inertial Neural Networks: A Direct Approach," Mathematics, MDPI, vol. 10(24), pages 1-23, December.
    15. Juan Yu & Kailong Xiong & Cheng Hu, 2024. "Synchronization Analysis for Quaternion-Valued Delayed Neural Networks with Impulse and Inertia via a Direct Technique," Mathematics, MDPI, vol. 12(7), pages 1-22, March.
    16. Yu Yao & Guodong Zhang & Yan Li, 2023. "Fixed/Preassigned-Time Stabilization for Complex-Valued Inertial Neural Networks with Distributed Delays: A Non-Separation Approach," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    17. Priyanka, K. Sri Raja & Soundararajan, G. & Kashkynbayev, Ardak & Nagamani, G., 2023. "Exponential H∞ synchronization and anti-synchronization of delayed discrete-time complex-valued neural networks with uncertainties," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 301-321.
    18. Alejandro Rincón & Fredy E. Hoyos & John E. Candelo-Becerra, 2022. "An Output Feedback Controller for a Second-Order System Subject to Asymmetric Output Constraint Based on Lyapunov Function with Unlimited Domain," Mathematics, MDPI, vol. 10(11), pages 1-20, May.
    19. Bekiros, Stelios & Yao, Qijia & Mou, Jun & Alkhateeb, Abdulhameed F. & Jahanshahi, Hadi, 2023. "Adaptive fixed-time robust control for function projective synchronization of hyperchaotic economic systems with external perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Guimin Gong & Wenhong Lv & Qi Wang, 2023. "Research on Urban Road Traffic Network Pinning Control Based on Feedback Control," Sustainability, MDPI, vol. 15(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2157-:d:843756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.