Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2023.10.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- O. M. Kwon & M. J. Park & Ju H. Park & S. M. Lee & E. J. Cha, 2014. "On Less Conservative Stability Criteria for Neural Networks with Time-Varying Delays Utilizing Wirtinger-Based Integral Inequality," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-13, June.
- Wang, Yibo & Hua, Changchun & Park, PooGyeon & Qian, Cheng, 2023. "Stability criteria for time-varying delay systems via an improved reciprocally convex inequality lemma," Applied Mathematics and Computation, Elsevier, vol. 448(C).
- Chang, Shuang & Wang, Yantao & Zhang, Xian & Wang, Xin, 2023. "A new method to study global exponential stability of inertial neural networks with multiple time-varying transmission delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 329-340.
- Chiu, Kuo-Shou & Li, Tongxing, 2022. "New stability results for bidirectional associative memory neural networks model involving generalized piecewise constant delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 719-743.
- Zamart, Chantapish & Botmart, Thongchai & Weera, Wajaree & Charoensin, Suphachai, 2022. "New delay-dependent conditions for finite-time extended dissipativity based non-fragile feedback control for neural networks with mixed interval time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 684-713.
- Shao, Hanyong & Li, Huanhuan & Zhu, Chuanjie, 2017. "New stability results for delayed neural networks," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 324-334.
- Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
- Lu, Ziqiang & Zhu, Yuanguo, 2023. "Asymptotic stability in pth moment of uncertain dynamical systems with time-delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 323-335.
- Chang, Xu-Kang & He, Yong & Gao, Zhen-Man, 2023. "Exponential stability of neural networks with a time-varying delay via a cubic function negative-determination lemma," Applied Mathematics and Computation, Elsevier, vol. 438(C).
- Huang, Chuangxia & Liu, Bingwen & Qian, Chaofan & Cao, Jinde, 2021. "Stability on positive pseudo almost periodic solutions of HPDCNNs incorporating D operator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1150-1163.
- Wang, Bo & Yan, Juan & Cheng, Jun & Zhong, Shouming, 2017. "New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 322-333.
- Zeng, Hong-Bing & Liu, Xiao-Gui & Wang, Wei, 2019. "A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 1-8.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Hanhua & Yan, Mengqing & Duan, Wenyong & Chen, Chong, 2024. "Low conservative stability criteria for discrete-time Lur’e systems with sector and slope constrained nonlinearities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 601-616.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zeng, Hong-Bing & Zhai, Zheng-Liang & Wang, Wei, 2021. "Hierarchical stability conditions of systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 404(C).
- Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
- de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
- Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
- Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
- Zhang, Kun & Zhang, Huaguang & Mu, Yunfei & Sun, Shaoxin, 2019. "Tracking control optimization scheme for a class of partially unknown fuzzy systems by using integral reinforcement learning architecture," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 344-356.
- R. Sakthivel & V. Nithya & Yong-Ki Ma & Chao Wang, 2018. "Finite-Time Nonfragile Dissipative Filter Design for Wireless Networked Systems with Sensor Failures," Complexity, Hindawi, vol. 2018, pages 1-13, October.
- Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
- Wang, Dongji & Chen, Fei & Meng, Bo & Hu, Xingliu & Wang, Jing, 2021. "Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).
- Lee, Tae H. & Park, Myeong Jin & Park, Ju H., 2021. "An improved stability criterion of neural networks with time-varying delays in the form of quadratic function using novel geometry-based conditions," Applied Mathematics and Computation, Elsevier, vol. 404(C).
- Zhang, Dian & Cheng, Jun & Ki Ahn, Choon & Ni, Hongjie, 2019. "A flexible terminal approach to stochastic stability and stabilization of continuous-time semi-Markovian jump systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 191-205.
- Can Zhao & Jinde Cao & Kaibo Shi & Yiqian Tang & Shouming Zhong & Fawaz E. Alsaadi, 2022. "Improved Nonfragile Sampled-Data Event-Triggered Control for the Exponential Synchronization of Delayed Complex Dynamical Networks," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
- Shi, Shuang & Fei, Zhongyang & Shi, Zhenpeng & Ren, Shunqing, 2018. "Stability and stabilization for discrete-time switched systems with asynchronism," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 520-536.
- Shuoting Wang & Kaibo Shi & Jin Yang, 2022. "Improved Stability Criteria for Delayed Neural Networks via a Relaxed Delay-Product-Type Lapunov–Krasovskii Functional," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
- Dong-Hoon Lee & Yeong-Jae Kim & Seung-Hoon Lee & Oh-Min Kwon, 2024. "Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional," Mathematics, MDPI, vol. 12(14), pages 1-19, July.
- Li, Lingchun & Shen, Mouquan & Zhang, Guangming & Yan, Shen, 2017. "H∞ control of Markov jump systems with time-varying delay and incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 95-106.
- Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Wei Kang & Hao Chen & Kaibo Shi & Jun Cheng, 2018. "Further Results on Reachable Set Bounding for Discrete-Time System with Time-Varying Delay and Bounded Disturbance Inputs," Complexity, Hindawi, vol. 2018, pages 1-11, March.
- Wang, Bo & Yan, Juan & Cheng, Jun & Zhong, Shouming, 2017. "New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 322-333.
- Chen, Wenbin & Lu, Junwei & Zhuang, Guangming & Gao, Fang & Zhang, Zhengqiang & Xu, Shengyuan, 2022. "Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 420(C).
More about this item
Keywords
Neural networks; Lyapunov method; Reciprocally convex inequality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:217:y:2024:i:c:p:109-120. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.