IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v164y2022ics0960077922008931.html
   My bibliography  Save this article

Finite-time synchronization for fractional-order quaternion-valued coupled neural networks with saturated impulse

Author

Listed:
  • Mo, Wenjun
  • Bao, Haibo

Abstract

In this paper, the issue of finite-time synchronization (FTS) of fractional-order quaternion-valued coupled neural networks (FOQVCNNs) with saturated impulse was discussed. The impulsive effect was firstly applied to the FOQVCNNs, which was subjected to saturation. Therefore, the constructed FOQVNNs was more suitable for realistic life and had a wider range of applications. The synchronization criteria were extended to a less conservative form. In addition, FTS was considered with the purpose of having a faster convergence rate. Based on the fractional-order differential inequality, polytopic representation approach, Lyapunov function, and the concept of FTS, some synchronization criteria were obtained to accomplish the synchronization for the FOQVCNNs, which were expressed as some inequalities. Then, the settling time was bounded, which could be accurately predicted with ease. Lastly, the theoretical outcome was proved to be valid by a numerical example.

Suggested Citation

  • Mo, Wenjun & Bao, Haibo, 2022. "Finite-time synchronization for fractional-order quaternion-valued coupled neural networks with saturated impulse," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008931
    DOI: 10.1016/j.chaos.2022.112714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922008931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Hui & Bao, Haibo, 2019. "Fixed-time synchronization of quaternion-valued neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    2. Li, Hong-Li & Kao, Yonggui & Hu, Cheng & Jiang, Haijun & Jiang, Yao-Lin, 2021. "Robust exponential stability of fractional-order coupled quaternion-valued neural networks with parametric uncertainties and impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Chen, Yuan & Wu, Jianwei & Bao, Haibo, 2022. "Finite-time stabilization for delayed quaternion-valued coupled neural networks with saturated impulse," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    4. Nengfa Wang & Changjin Xu & Zixin Liu & Eric Campos, 2021. "Further Exploration on Bifurcation for Fractional-Order Bidirectional Associative Memory (BAM) Neural Networks concerning Time Delay∗," Complexity, Hindawi, vol. 2021, pages 1-20, October.
    5. Wang, Fei & Zheng, Zhaowen, 2019. "Quasi-projective synchronization of fractional order chaotic systems under input saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    6. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    7. Xu, Changjin & Liu, Zixin & Yao, Lingyun & Aouiti, Chaouki, 2021. "Further exploration on bifurcation of fractional-order six-neuron bi-directional associative memory neural networks with multi-delays," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    8. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    9. Udhayakumar, K. & Rakkiyappan, R. & Li, Xiaodi & Cao, Jinde, 2021. "Mutiple ψ-type stability of fractional-order quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    10. Li, Ruoxia & Cao, Jinde & Xue, Changfeng & Manivannan, R., 2021. "Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jibin Yang & Xiaohui Xu & Quan Xu & Haolin Yang & Mengge Yu, 2024. "Stability and Synchronization of Delayed Quaternion-Valued Neural Networks under Multi-Disturbances," Mathematics, MDPI, vol. 12(6), pages 1-26, March.
    2. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming & Jia, Qiang, 2023. "Exponential synchronization for multi-weighted dynamic networks via finite-level quantized control with adaptive scaling gain," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Li, Xuemei & Liu, Xinge & Wang, Fengxian, 2023. "Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Cui, Xueke & Li, Hong-Li & Zhang, Long & Hu, Cheng & Bao, Haibo, 2023. "Complete synchronization for discrete-time fractional-order coupled neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Jiang, Ziling & Huang, Fan & Shao, Haijian & Cai, Shuiming & Lu, Xiaobo & Jiang, Shengqin, 2023. "Time-varying finite-time synchronization analysis of attack-induced uncertain neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Mo, Wenjun & Bao, Haibo, 2024. "Mean-square bounded synchronization of fractional-order chaotic Lur’e systems under deception attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    7. Yang, Dongsheng & Yu, Yongguang & Wang, Hu & Ren, Guojian & Zhang, Xiaoli, 2024. "Successive lag synchronization of heterogeneous distributed-order coupled neural networks with unbounded delayed coupling," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yonghui & Xue, Yu & Yang, Xiaona & Zhang, Xian, 2023. "A direct analysis method to Lagrangian global exponential stability for quaternion memristive neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    2. Zhang, Xiao-Li & Li, Hong-Li & Kao, Yonggui & Zhang, Long & Jiang, Haijun, 2022. "Global Mittag-Leffler synchronization of discrete-time fractional-order neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    3. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    4. Duan, Lian & Liu, Jinzhi & Huang, Chuangxia & Wang, Zengyun, 2022. "Finite-/fixed-time anti-synchronization of neural networks with leakage delays under discontinuous disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    5. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Shu, Jinlong & Wu, Baowei & Xiong, Lianglin, 2022. "Stochastic stability criteria and event-triggered control of delayed Markovian jump quaternion-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    7. Zhang, Zhongjie & Yu, Tingting & Zhang, Xian, 2022. "Algebra criteria for global exponential stability of multiple time-varying delay Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    8. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    9. Juan Yu & Kailong Xiong & Cheng Hu, 2024. "Synchronization Analysis for Quaternion-Valued Delayed Neural Networks with Impulse and Inertia via a Direct Technique," Mathematics, MDPI, vol. 12(7), pages 1-22, March.
    10. Shoreh, A.A.-H. & Kuznetsov, N.V. & Mokaev, T.N., 2022. "New adaptive synchronization algorithm for a general class of complex hyperchaotic systems with unknown parameters and its application to secure communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    11. Mairemunisa Abudusaimaiti & Abuduwali Abudukeremu & Amina Sabir, 2023. "Fixed/Preassigned-Time Stochastic Synchronization of Complex-Valued Fuzzy Neural Networks with Time Delay," Mathematics, MDPI, vol. 11(17), pages 1-18, September.
    12. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.
    13. Huang, Conggui & Wang, Fei & Zheng, Zhaowen, 2021. "Exponential stability for nonlinear fractional order sampled-data control systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    14. Usa Humphries & Grienggrai Rajchakit & Pramet Kaewmesri & Pharunyou Chanthorn & Ramalingam Sriraman & Rajendran Samidurai & Chee Peng Lim, 2020. "Stochastic Memristive Quaternion-Valued Neural Networks with Time Delays: An Analysis on Mean Square Exponential Input-to-State Stability," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    15. Chen, Yuan & Wu, Jianwei & Bao, Haibo, 2022. "Finite-time stabilization for delayed quaternion-valued coupled neural networks with saturated impulse," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    16. Cui, Qian & Li, Lulu & Lu, Jianquan & Alofi, Abdulaziz, 2022. "Finite-time synchronization of complex dynamical networks under delayed impulsive effects," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    17. Otkel, Madina & Ganesan, Soundararajan & Rajan, Rakkiyappan & Kashkynbayev, Ardak, 2024. "Finite-time/fixed-time synchronization of memristive shunting inhibitory cellular neural networks via sliding mode control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 252-263.
    18. Amine, Saida & Hajri, Youssra & Allali, Karam, 2022. "A delayed fractional-order tumor virotherapy model: Stability and Hopf bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    19. Zhao, Mingfang & Li, Hong-Li & Zhang, Long & Hu, Cheng & Jiang, Haijun, 2023. "Quasi-synchronization of discrete-time fractional-order quaternion-valued memristive neural networks with time delays and uncertain parameters," Applied Mathematics and Computation, Elsevier, vol. 453(C).
    20. Shafiya, M. & Nagamani, G., 2022. "New finite-time passivity criteria for delayed fractional-order neural networks based on Lyapunov function approach," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:164:y:2022:i:c:s0960077922008931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.