IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i16p3553-d1219011.html
   My bibliography  Save this article

Adaptive Global Synchronization for a Class of Quaternion-Valued Cohen-Grossberg Neural Networks with Known or Unknown Parameters

Author

Listed:
  • Jun Guo

    (College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China)

  • Yanchao Shi

    (School of Science, Southwest Petroleum University, Chengdu 610500, China)

  • Weihua Luo

    (School of Mathematics and Physics, Hunan University of Arts and Science, Changde 415000, China)

  • Yanzhao Cheng

    (School of Science, Southwest Petroleum University, Chengdu 610500, China)

  • Shengye Wang

    (School of Science, Southwest Petroleum University, Chengdu 610500, China)

Abstract

In this paper, the adaptive synchronization problem of quaternion-valued Cohen–Grossberg neural networks (QVCGNNs), with and without known parameters, is investigated. On the basis of constructing an appropriate Lyapunov function, and utilizing parameter identification theory and decomposition methods, two effective adaptive feedback schemes are proposed, to guarantee the realization of global synchronization of CGQVNNs. The control gain of the above schemes can be obtained using the Matlab LMI toolbox. The theoretical results presented in this work enrich the literature exploring the adaptive synchronization problem of quaternion-valued neural networks (QVNNs). Finally, the reliability of the theoretical schemes derived in this work is shown in two interesting numerical examples.

Suggested Citation

  • Jun Guo & Yanchao Shi & Weihua Luo & Yanzhao Cheng & Shengye Wang, 2023. "Adaptive Global Synchronization for a Class of Quaternion-Valued Cohen-Grossberg Neural Networks with Known or Unknown Parameters," Mathematics, MDPI, vol. 11(16), pages 1-16, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3553-:d:1219011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/16/3553/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/16/3553/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Wei & Zhu, Song & Fang, Xiaoyu & Wang, Wei, 2019. "Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Mingwen Zheng & Lixiang Li & Haipeng Peng & Jinghua Xiao & Yixian Yang & Hui Zhao, 2016. "Finite-time stability and synchronization for memristor-based fractional-order Cohen-Grossberg neural network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(9), pages 1-11, September.
    3. Deng, Hui & Bao, Haibo, 2019. "Fixed-time synchronization of quaternion-valued neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    4. Zhang, Chaolong & Deng, Feiqi & Peng, Yunjian & Zhang, Bo, 2015. "Adaptive synchronization of Cohen–Grossberg neural network with mixed time-varying delays and stochastic perturbation," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 792-801.
    5. Jinlong Shu & Lianglin Xiong & Tao Wu & Zixin Liu, 2019. "Stability Analysis of Quaternion-Valued Neutral-Type Neural Networks with Time-Varying Delay," Mathematics, MDPI, vol. 7(1), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Yu & Kailong Xiong & Cheng Hu, 2024. "Synchronization Analysis for Quaternion-Valued Delayed Neural Networks with Impulse and Inertia via a Direct Technique," Mathematics, MDPI, vol. 12(7), pages 1-22, March.
    2. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Li, Xuemei & Liu, Xinge & Wang, Fengxian, 2023. "Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    5. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    6. Duan, Lian & Shi, Min & Huang, Chuangxia & Fang, Xianwen, 2021. "Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Liu, Shuxin & Yu, Yongguang & Zhang, Shuo & Zhang, Yuting, 2018. "Robust stability of fractional-order memristor-based Hopfield neural networks with parameter disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 845-854.
    8. Zhang, Weiwei & Sha, Chunlin & Cao, Jinde & Wang, Guanglan & Wang, Yuan, 2021. "Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    9. Mairemunisa Abudusaimaiti & Abuduwali Abudukeremu & Amina Sabir, 2023. "Fixed/Preassigned-Time Stochastic Synchronization of Complex-Valued Fuzzy Neural Networks with Time Delay," Mathematics, MDPI, vol. 11(17), pages 1-18, September.
    10. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Du, Feifei & Lu, Jun-Guo, 2021. "New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    12. Zhou, Wenjia & Hu, Yuanfa & Liu, Xiaoyang & Cao, Jinde, 2022. "Finite-time adaptive synchronization of coupled uncertain neural networks via intermittent control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    13. Boaretto, B.R.R. & Budzinski, R.C. & Prado, T.L. & Kurths, J. & Lopes, S.R., 2018. "Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 126-138.
    14. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Chen, Yonghui & Zhang, Xian & Xue, Yu, 2022. "Global exponential synchronization of high-order quaternion Hopfield neural networks with unbounded distributed delays and time-varying discrete delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 173-189.
    16. Zhanying Yang & Jie Zhang, 2019. "Stability Analysis of Fractional-Order Bidirectional Associative Memory Neural Networks with Mixed Time-Varying Delays," Complexity, Hindawi, vol. 2019, pages 1-22, October.
    17. Zhang, Zhi-Ming & He, Yong & Wu, Min & Wang, Qing-Guo, 2017. "Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 121-132.
    18. Ganesan, Bhuvaneshwari & Annamalai, Manivannan, 2023. "Anti-synchronization analysis of chaotic neural networks using delay product type looped-Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    19. Jingjing You & Abdujelil Abdurahman & Hayrengul Sadik, 2022. "Fixed/Predefined-Time Synchronization of Complex-Valued Stochastic BAM Neural Networks with Stabilizing and Destabilizing Impulse," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    20. Shuang Wang & Hai Zhang & Weiwei Zhang & Hongmei Zhang, 2021. "Finite-Time Projective Synchronization of Caputo Type Fractional Complex-Valued Delayed Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:16:p:3553-:d:1219011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.