IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p217-d1315752.html
   My bibliography  Save this article

Classification Methods for the Serological Status Based on Mixtures of Skew-Normal and Skew-t Distributions

Author

Listed:
  • Tiago Dias-Domingues

    (Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
    These authors contributed equally to this work.)

  • Helena Mouriño

    (Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
    These authors contributed equally to this work.)

  • Nuno Sepúlveda

    (Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
    These authors contributed equally to this work.)

Abstract

Gaussian mixture models are widely employed in serological data analysis to discern between seropositive and seronegative individuals. However, serological populations often exhibit significant skewness, making symmetric distributions like Normal or Student-t distributions unreliable. In this study, we propose finite mixture models based on Skew-Normal and Skew-t distributions for serological data analysis. Although these distributions are well established in the literature, their application to serological data needs further exploration, with emphasis on the determination of the threshold that distinguishes seronegative from seropositive populations. Our previous work proposed three methods to estimate the cutoff point when the true serological status is unknown. This paper aims to compare the three cutoff techniques in terms of their reliability to estimate the true threshold value. To attain this goal, we conducted a Monte Carlo simulation study. The proposed cutoff points were also applied to an antibody dataset against four SARS-CoV-2 virus antigens where the true serological status is known. For this real dataset, we also compared the performance of our estimated cutoff points with the ROC curve method, commonly used in situations where the true serological status is known.

Suggested Citation

  • Tiago Dias-Domingues & Helena Mouriño & Nuno Sepúlveda, 2024. "Classification Methods for the Serological Status Based on Mixtures of Skew-Normal and Skew-t Distributions," Mathematics, MDPI, vol. 12(2), pages 1-25, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:217-:d:1315752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Basso, Rodrigo M. & Lachos, Víctor H. & Cabral, Celso Rômulo Barbosa & Ghosh, Pulak, 2010. "Robust mixture modeling based on scale mixtures of skew-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2926-2941, December.
    2. Prates, Marcos Oliveira & Lachos, Victor Hugo & Barbosa Cabral, Celso Rômulo, 2013. "mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i12).
    3. Tong, Donald D.M. & Buxser, Stephen & Vidmar, Thomas J., 2007. "Application of a mixture model for determining the cutoff threshold for activity in high-throughput screening," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 4002-4012, May.
    4. Rota, Matteo & Antolini, Laura, 2014. "Finding the optimal cut-point for Gaussian and Gamma distributed biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdi Teimouri & Saralees Nadarajah, 2022. "Maximum Likelihood Estimation for the Asymmetric Exponential Power Distribution," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 665-692, August.
    2. Francisco H. C. Alencar & Christian E. Galarza & Larissa A. Matos & Victor H. Lachos, 2022. "Finite mixture modeling of censored and missing data using the multivariate skew-normal distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 521-557, September.
    3. Libin Jin & Sung Nok Chiu & Jianhua Zhao & Lixing Zhu, 2023. "A constrained maximum likelihood estimation for skew normal mixtures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(4), pages 391-419, May.
    4. Morris, Katherine & Punzo, Antonio & McNicholas, Paul D. & Browne, Ryan P., 2019. "Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 145-166.
    5. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    6. Semhar Michael & Volodymyr Melnykov, 2016. "An effective strategy for initializing the EM algorithm in finite mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 563-583, December.
    7. Yana Melnykov & Xuwen Zhu & Volodymyr Melnykov, 2021. "Transformation mixture modeling for skewed data groups with heavy tails and scatter," Computational Statistics, Springer, vol. 36(1), pages 61-78, March.
    8. Prates, Marcos Oliveira & Lachos, Victor Hugo & Barbosa Cabral, Celso Rômulo, 2013. "mixsmsn: Fitting Finite Mixture of Scale Mixture of Skew-Normal Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 54(i12).
    9. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    10. McLachlan, Geoff & Lee, Sharon X, 2013. "EMMIXuskew: An R Package for Fitting Mixtures of Multivariate Skew t Distributions via the EM Algorithm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i12).
    11. Rocío Aznar-Gimeno & Luis M. Esteban & Rafael del-Hoyo-Alonso & Ángel Borque-Fernando & Gerardo Sanz, 2022. "A Stepwise Algorithm for Linearly Combining Biomarkers under Youden Index Maximization," Mathematics, MDPI, vol. 10(8), pages 1-26, April.
    12. Abbas Mahdavi & Anthony F. Desmond & Ahad Jamalizadeh & Tsung-I Lin, 2024. "Skew Multiple Scaled Mixtures of Normal Distributions with Flexible Tail Behavior and Their Application to Clustering," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 620-649, November.
    13. Chunzheng Cao & Mengqian Chen & Yahui Wang & Jian Qing Shi, 2018. "Heteroscedastic replicated measurement error models under asymmetric heavy-tailed distributions," Computational Statistics, Springer, vol. 33(1), pages 319-338, March.
    14. Fatma Zehra Doğru & Olcay Arslan, 2021. "Finite mixtures of skew Laplace normal distributions with random skewness," Computational Statistics, Springer, vol. 36(1), pages 423-447, March.
    15. Nam-Hwui Kim & Ryan Browne, 2019. "Subspace clustering for the finite mixture of generalized hyperbolic distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 641-661, September.
    16. Naderi, Mehrdad & Hung, Wen-Liang & Lin, Tsung-I & Jamalizadeh, Ahad, 2019. "A novel mixture model using the multivariate normal mean–variance mixture of Birnbaum–Saunders distributions and its application to extrasolar planets," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 126-138.
    17. Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
    18. Francisco H. C. Alencar & Larissa A Matos & Víctor H. Lachos, 2022. "Finite Mixture of Censored Linear Mixed Models for Irregularly Observed Longitudinal Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 463-486, November.
    19. Camila Borelli Zeller & Celso Rômulo Barbosa Cabral & Víctor Hugo Lachos & Luis Benites, 2019. "Finite mixture of regression models for censored data based on scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 89-116, March.
    20. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:217-:d:1315752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.