IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3832-d1536493.html
   My bibliography  Save this article

Surrounding Rock Squeezing Classification in Underground Engineering Using a Hybrid Paradigm of Generative Artificial Intelligence and Deep Ensemble Learning

Author

Listed:
  • Shouye Cheng

    (Research Institute of Mine Construction, Tiandi Science and Technology Company Limited, Beijing 100013, China
    State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, China)

  • Xin Yin

    (School of Civil Engineering, Wuhan University, Wuhan 430072, China)

  • Feng Gao

    (Research Institute of Mine Construction, Tiandi Science and Technology Company Limited, Beijing 100013, China
    State Key Laboratory of Intelligent Coal Mining and Strata Control, Beijing 100013, China)

  • Yucong Pan

    (School of Civil Engineering, Wuhan University, Wuhan 430072, China)

Abstract

Surrounding rock squeezing is a common geological disaster in underground excavation projects (e.g., TBM tunneling and deep mining), which has adverse effects on construction safety, schedule, and property. To predict the squeezing of the surrounding rock accurately and quickly, this study proposes a hybrid machine learning paradigm that integrates generative artificial intelligence and deep ensemble learning. Specifically, conditional tabular generative adversarial network is devised to solve the problems of data shortage and class imbalance for data augmentation at the data level, and the deep random forest is built based on the augmented data for subsequent squeezing classification. A total of 139 historical squeezing cases are collected worldwide to validate the efficacy of the proposed modeling paradigm. The results reveal that this paradigm achieves a prediction accuracy of 92.86% and a macro F 1 -score of 0.9292. In particular, the individual F 1 -scores on strong squeezing and extremely strong squeezing are more than 0.9, with excellent prediction reliability for high-intensity squeezing. Finally, a comparative analysis with traditional machine learning techniques is conducted and the superiority of this paradigm is further verified. This study provides a valuable reference for surrounding rock squeezing classification under a limited data environment.

Suggested Citation

  • Shouye Cheng & Xin Yin & Feng Gao & Yucong Pan, 2024. "Surrounding Rock Squeezing Classification in Underground Engineering Using a Hybrid Paradigm of Generative Artificial Intelligence and Deep Ensemble Learning," Mathematics, MDPI, vol. 12(23), pages 1-18, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3832-:d:1536493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3832/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3832/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yong Zhang & Qi Zhang & Xiang Zhang & Meng Li & Guoqing Qi, 2024. "How Do We Analyze the Accident Causation of Shield Construction of Water Conveyance Tunnels? A Method Based on the N-K Model and Complex Network," Mathematics, MDPI, vol. 12(20), pages 1-30, October.
    2. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Dellnitz & Andreas Kleine & Madjid Tavana, 2024. "An integrated data envelopment analysis and regression tree method for new product price estimation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(4), pages 1189-1211, December.
    2. Ariana Chang & Tian‐Shyug Lee & Hsiu‐Mei Lee, 2024. "Applying sustainable development goals in financial forecasting using machine learning techniques," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 2277-2289, May.
    3. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    4. Emilio Aguirre & Federico García-Suárez & Gabriela Sicilia, 2021. "Eficiencia técnica en la ganadería de carne bovina pastoril. Medición y exploración de sus determinantes en Uruguay," Documentos de Trabajo (working papers) 1321, Department of Economics - dECON.
    5. Lotfi Boudabsa & Damir Filipovi'c, 2022. "Ensemble learning for portfolio valuation and risk management," Papers 2204.05926, arXiv.org.
    6. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    7. A. Poterie & J.-F. Dupuy & V. Monbet & L. Rouvière, 2019. "Classification tree algorithm for grouped variables," Computational Statistics, Springer, vol. 34(4), pages 1613-1648, December.
    8. Miguel A. Vallejo & Laura Vallejo-Slocker & Martin Offenbaecher & Jameson K. Hirsch & Loren L. Toussaint & Niko Kohls & Fuschia Sirois & Javier Rivera, 2021. "Psychological Flexibility Is Key for Reducing the Severity and Impact of Fibromyalgia," IJERPH, MDPI, vol. 18(14), pages 1-11, July.
    9. Eduardo Rodríguez Sánchez & Eduardo Filemón Vázquez Santacruz & Humberto Cervantes Maceda, 2023. "Effort and Cost Estimation Using Decision Tree Techniques and Story Points in Agile Software Development," Mathematics, MDPI, vol. 11(6), pages 1-31, March.
    10. Suryo Adi Rakhmawan & M. Hafidz Omar & Muhammad Riaz & Nasir Abbas, 2023. "Hotelling T 2 Control Chart for Detecting Changes in Mortality Models Based on Machine-Learning Decision Tree," Mathematics, MDPI, vol. 11(3), pages 1-14, January.
    11. Olga Takacs & Janos Vincze, 2018. "The within-job gender pay gap in Hungary," CERS-IE WORKING PAPERS 1834, Institute of Economics, Centre for Economic and Regional Studies.
    12. Michael Puglia & Adam Tucker, 2020. "Machine Learning, the Treasury Yield Curve and Recession Forecasting," Finance and Economics Discussion Series 2020-038, Board of Governors of the Federal Reserve System (U.S.).
    13. Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
    14. Kian Tehranian, 2023. "Can Machine Learning Catch Economic Recessions Using Economic and Market Sentiments?," Papers 2308.16200, arXiv.org.
    15. HOROBEȚ Alexandra & BULAI Vlad Cosmin, 2019. "Assessing the Local Developmental Impact of Hydrocarbon Exploitation in a Mature Region: A Random Forest Approach," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 02, June.
    16. Yu-Shan Shih & Kuang-Hsun Liu, 2019. "Regression trees for detecting preference patterns from rank data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 683-702, September.
    17. Osman, Ibrahim H. & Anouze, Abdel Latef & Irani, Zahir & Lee, Habin & Medeni, Tunç D. & Weerakkody, Vishanth, 2019. "A cognitive analytics management framework for the transformation of electronic government services from users’ perspective to create sustainable shared values," European Journal of Operational Research, Elsevier, vol. 278(2), pages 514-532.
    18. Renato Bruni & Gianpiero Bianchi, 2018. "Robustness Analysis of a Website Categorization Procedure based on Machine Learning," DIAG Technical Reports 2018-04, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    19. Jingfang Liu & Mengshi Shi & Huihong Jiang, 2022. "Detecting Suicidal Ideation in Social Media: An Ensemble Method Based on Feature Fusion," IJERPH, MDPI, vol. 19(13), pages 1-13, July.
    20. Tai, Chung-Ching & Lin, Hung-Wen & Chie, Bin-Tzong & Tung, Chen-Yuan, 2019. "Predicting the failures of prediction markets: A procedure of decision making using classification models," International Journal of Forecasting, Elsevier, vol. 35(1), pages 297-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3832-:d:1536493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.