IDEAS home Printed from https://ideas.repec.org/p/ude/wpaper/1321.html
   My bibliography  Save this paper

Eficiencia técnica en la ganadería de carne bovina pastoril. Medición y exploración de sus determinantes en Uruguay

Author

Listed:
  • Emilio Aguirre

    (Facultad de Ciencias Sociales de la Universidad de la República, Uruguay)

  • Federico García-Suárez

    (Facultad de Agronomía de la Universidad de la República, Uruguay)

  • Gabriela Sicilia

    (Departamento de Econom ́ıa, Contabilidad y Finanzas, Universidad de la Laguna, España)

Abstract

Este artıculo estima la eficiencia técnica de la ganadería de carne vacuna pastoril en Uruguay por establecimiento en el año agrícola 2012/2011, y explora sus determinantes con registros administrativos de cobertura nacional y obligatoria. Se estima una frontera estocástica de producción translog de carne vacuna con el modelo de H.-J. Wang (2002), se encuentra que la eficiencia técnica media es de 77.3 % Poseer balanza para pesar ganado, tener tubos para manipular vacunos, contratar servicios en el establecimiento, disponer de asesoramiento agronómico y contar con asistencia veterinaria, se vincula positivamente con el nivel y negativamente con la varianza de la eficiencia técnica.

Suggested Citation

  • Emilio Aguirre & Federico García-Suárez & Gabriela Sicilia, 2021. "Eficiencia técnica en la ganadería de carne bovina pastoril. Medición y exploración de sus determinantes en Uruguay," Documentos de Trabajo (working papers) 1321, Department of Economics - dECON.
  • Handle: RePEc:ude:wpaper:1321
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/20.500.12008/30440
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zvi Griliches & Jacques Mairesse, 1995. "Production Functions: The Search for Identification," NBER Working Papers 5067, National Bureau of Economic Research, Inc.
    2. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    3. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    4. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 2008. "The Measurement of Productive Efficiency and Productivity Growth," OUP Catalogue, Oxford University Press, number 9780195183528.
    5. García-Suárez, Federico & Pérez-Quesada, Gabriela & Molina, Carlos, 2022. "Rangeland cattle production in Uruguay: Single-output versus multi-output efficiency measures," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 22(01), June.
    6. Boris Bravo-Ureta & Daniel Solís & Víctor Moreira López & José Maripani & Abdourahmane Thiam & Teodoro Rivas, 2007. "Technical efficiency in farming: a meta-regression analysis," Journal of Productivity Analysis, Springer, vol. 27(1), pages 57-72, February.
    7. Gatti, Nicolas & Lema, Daniel & Brescia, Victor, 2015. "A Meta-Frontier Approach to Measuring Technical Efficiency and Technology Gaps in Beef Cattle Production in Argentina," 2015 Conference, August 9-14, 2015, Milan, Italy 211647, International Association of Agricultural Economists.
    8. Trestini, Samuele, 2006. "Technical Efficiency of Italian Beef Cattle Production Under a Heteroscedastic Non-Neutral Production Frontier Approach," Conference Papers 6683, University of Minnesota, Center for International Food and Agricultural Policy.
    9. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    10. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514, September.
    11. Sickles,Robin C. & Zelenyuk,Valentin, 2019. "Measurement of Productivity and Efficiency," Cambridge Books, Cambridge University Press, number 9781107036161, September.
    12. Nin, Alejandro & Ehui, Simeon & Benin, Samuel, 2007. "Livestock Productivity in Developing Countries: An Assessment," Handbook of Agricultural Economics, in: Robert Evenson & Prabhu Pingali (ed.), Handbook of Agricultural Economics, edition 1, volume 3, chapter 47, pages 2461-2532, Elsevier.
    13. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    14. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    15. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    16. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    17. Qingyuan Zhao & Trevor Hastie, 2021. "Causal Interpretations of Black-Box Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 272-281, January.
    18. Qushim, Berdikul & Gillespie, Jeffrey M. & Nehring, Richard F., 2013. "Scale Economies And Economic Performance In Southeastern U.S. Cow-Calf Production," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 143009, Southern Agricultural Economics Association.
    19. George E. Battese, 1997. "A Note On The Estimation Of Cobb‐Douglas Production Functions When Some Explanatory Variables Have Zero Values," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 250-252, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    2. Narangerel Ganbold & Shah Fahad & Hua Li & Tumendemberel Gungaa, 2022. "An evaluation of subsidy policy impacts, transient and persistent technical efficiency: A case of Mongolia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9223-9242, July.
    3. Markose Chekol Zewdie & Michele Moretti & Daregot Berihun Tenessa & Zemen Ayalew Ayele & Jan Nyssen & Enyew Adgo Tsegaye & Amare Sewnet Minale & Steven Van Passel, 2021. "Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach," Land, MDPI, vol. 10(3), pages 1-17, March.
    4. Radha R. Ashrit, 2023. "Estimation of technical efficiency of Indian farms for major crops during 2013–2014 and 2017–2018: a stochastic Frontier production approach," SN Business & Economics, Springer, vol. 3(2), pages 1-32, February.
    5. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    6. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    7. García-Suárez, Federico & Pérez-Quesada, Gabriela & Molina, Carlos, 2022. "Rangeland cattle production in Uruguay: Single-output versus multi-output efficiency measures," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 22(01), June.
    8. Efecan, Volkan & Temiz, İzzettin, 2023. "Assessing the technical efficiency of container ports based on a non-monotonic inefficiency effects model," Utilities Policy, Elsevier, vol. 81(C).
    9. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    10. Wijesinghe, Asanka & Kaushalya, Thilani, 2022. "Caloric consumption efficiency and import dependency: Evidence from Sri Lanka," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 420-438.
    11. Saldias, Rodrigo & von Cramon-Taubadel, Stephan, 2012. "Access to credit and the determinants of technical inefficiency among specialized small farmers in Chile," DARE Discussion Papers 1211, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
    12. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    13. Antonio Alvarez & Christine Amsler & Luis Orea & Peter Schmidt, 2006. "Interpreting and Testing the Scaling Property in Models where Inefficiency Depends on Firm Characteristics," Journal of Productivity Analysis, Springer, vol. 25(3), pages 201-212, June.
    14. Nchinda, Valentine P. & Villano, Renato A. & Hadley, David & Morales, Emilio L., 2016. "Performance of smallholder minisett seed yam farm enterprises in Cameroon," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 11(4), pages 1-15, December.
    15. Christine Amsler & Peter Schmidt & Wen-Jen Tsay, 2015. "A post-truncation parameterization of truncated normal technical inefficiency," Journal of Productivity Analysis, Springer, vol. 44(2), pages 209-220, October.
    16. Dipanwita Sarkar & Trevor C. Collier, 2019. "Does host-country education mitigate immigrant inefficiency? Evidence from earnings of Australian university graduates," Empirical Economics, Springer, vol. 56(1), pages 81-106, January.
    17. repec:cte:wsrepe:ws121007 is not listed on IDEAS
    18. Cliff Huang & Hung-pin Lai, 2012. "Estimation of stochastic frontier models based on multimodel inference," Journal of Productivity Analysis, Springer, vol. 38(3), pages 273-284, December.
    19. Adugna Lemi & Ian Wright, 2020. "Exports, foreign ownership, and firm-level efficiency in Ethiopia and Kenya: an application of the stochastic frontier model," Empirical Economics, Springer, vol. 58(2), pages 669-698, February.
    20. Cheol-Keun Cho & Peter Schmidt, 2020. "The wrong skew problem in stochastic frontier models when inefficiency depends on environmental variables," Empirical Economics, Springer, vol. 58(5), pages 2031-2047, May.
    21. Ajayi, Victor & Weyman-Jones, Tom, 2021. "State-level electricity generation efficiency: Do restructuring and regulatory institutions matter in the US?," Energy Economics, Elsevier, vol. 104(C).

    More about this item

    Keywords

    Eficiencia t ́ecnica; Funci ́on de Producci ́on; Fronteras Estoc ́asticas; Ganader ́ıa de carne vacuna; Uruguay;
    All these keywords.

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ude:wpaper:1321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Doneschi or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/derauuy.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.