Fractional Calculus in Russia at the End of XIX Century
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Stefan G. Samko & Rogério P. Cardoso, 2003. "Integral equations of the first kind of Sonine type," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-24, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
- Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
- Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
- Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
- Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
- Vasily E. Tarasov, 2021. "General Fractional Calculus: Multi-Kernel Approach," Mathematics, MDPI, vol. 9(13), pages 1-14, June.
- Vasily E. Tarasov, 2021. "General Fractional Vector Calculus," Mathematics, MDPI, vol. 9(21), pages 1-87, November.
- Yuri Luchko, 2021. "Special Functions of Fractional Calculus in the Form of Convolution Series and Their Applications," Mathematics, MDPI, vol. 9(17), pages 1-15, September.
- Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
- Hainaut, Donatien & Chen, Maggie & Scalas, Enrico, 2023. "The rough Hawkes process," LIDAM Discussion Papers ISBA 2023007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Vasily E. Tarasov, 2024. "General Fractional Economic Dynamics with Memory," Mathematics, MDPI, vol. 12(15), pages 1-24, August.
- Yuri Luchko, 2024. "On Symmetrical Sonin Kernels in Terms of Hypergeometric-Type Functions," Mathematics, MDPI, vol. 12(24), pages 1-18, December.
- Yuri Luchko, 2021. "General Fractional Integrals and Derivatives with the Sonine Kernels," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
- Maryam Alkandari & Yuri Luchko, 2024. "Operational Calculus for the 1st-Level General Fractional Derivatives and Its Applications," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
More about this item
Keywords
fractional integrals and derivatives; Grünwald-Letnikov approach; Sonine kernel; Nekrasov fractional derivative;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:15:p:1736-:d:599603. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.