IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i6p849-d766242.html
   My bibliography  Save this article

Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense

Author

Listed:
  • Yuri Luchko

    (Department of Mathematics, Physics and Chemistry, Berlin University of Applied Sciences and Technology, Luxemburger Str. 10, 13353 Berlin, Germany)

Abstract

In this paper, we first consider the general fractional derivatives of arbitrary order defined in the Riemann–Liouville sense. In particular, we deduce an explicit form of their null space and prove the second fundamental theorem of fractional calculus that leads to a closed form formula for their projector operator. These results allow us to formulate the natural initial conditions for the fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann–Liouville sense. In the second part of the paper, we develop an operational calculus of the Mikusiński type for the general fractional derivatives of arbitrary order in the Riemann–Liouville sense and apply it for derivation of an explicit form of solutions to the Cauchy problems for the single- and multi-term linear fractional differential equations with these derivatives. The solutions are provided in form of the convolution series generated by the kernels of the corresponding general fractional integrals.

Suggested Citation

  • Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:849-:d:766242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/6/849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/6/849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anatoly N. Kochubei & Yuri Kondratiev, 2019. "Growth Equation of the General Fractional Calculus," Mathematics, MDPI, vol. 7(7), pages 1-8, July.
    2. Vasily E. Tarasov, 2021. "General Fractional Vector Calculus," Mathematics, MDPI, vol. 9(21), pages 1-87, November.
    3. Fahad, Hafiz Muhammad & Fernandez, Arran, 2021. "Operational calculus for Caputo fractional calculus with respect to functions and the associated fractional differential equations," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    4. Yuri Luchko, 2021. "General Fractional Integrals and Derivatives with the Sonine Kernels," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    5. Yuri Luchko & Masahiro Yamamoto, 2020. "The General Fractional Derivative and Related Fractional Differential Equations," Mathematics, MDPI, vol. 8(12), pages 1-20, November.
    6. Yuri Luchko, 2021. "Special Functions of Fractional Calculus in the Form of Convolution Series and Their Applications," Mathematics, MDPI, vol. 9(17), pages 1-15, September.
    7. Rudolf Hilfer & Yuri Luchko, 2019. "Desiderata for Fractional Derivatives and Integrals," Mathematics, MDPI, vol. 7(2), pages 1-5, February.
    8. Stefan G. Samko & Rogério P. Cardoso, 2003. "Integral equations of the first kind of Sonine type," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maryam Al-Kandari & Latif A-M. Hanna & Yuri Luchko, 2022. "Operational Calculus for the General Fractional Derivatives of Arbitrary Order," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    2. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    3. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Ravi P. Agarwal & Snezhana Hristova & Donal O’Regan, 2023. "Inequalities for Riemann–Liouville-Type Fractional Derivatives of Convex Lyapunov Functions and Applications to Stability Theory," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    5. Yuri Luchko, 2023. "Fractional Integrals and Derivatives: “True” versus “False”," Mathematics, MDPI, vol. 11(13), pages 1-2, July.
    6. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    7. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    2. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    3. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    4. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    5. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    6. Vasily E. Tarasov, 2022. "General Non-Local Continuum Mechanics: Derivation of Balance Equations," Mathematics, MDPI, vol. 10(9), pages 1-43, April.
    7. Vasily E. Tarasov, 2024. "General Fractional Economic Dynamics with Memory," Mathematics, MDPI, vol. 12(15), pages 1-24, August.
    8. Maryam Al-Kandari & Latif A-M. Hanna & Yuri Luchko, 2022. "Operational Calculus for the General Fractional Derivatives of Arbitrary Order," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    9. Maryam Alkandari & Yuri Luchko, 2024. "Operational Calculus for the 1st-Level General Fractional Derivatives and Its Applications," Mathematics, MDPI, vol. 12(17), pages 1-23, August.
    10. Vasily E. Tarasov, 2021. "General Fractional Calculus: Multi-Kernel Approach," Mathematics, MDPI, vol. 9(13), pages 1-14, June.
    11. Vasily E. Tarasov & Svetlana S. Tarasova, 2020. "Fractional Derivatives and Integrals: What Are They Needed For?," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
    12. Isah, Sunday Simon & Fernandez, Arran & Özarslan, Mehmet Ali, 2023. "On bivariate fractional calculus with general univariate analytic kernels," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Yuri Luchko, 2023. "Fractional Integrals and Derivatives: “True” versus “False”," Mathematics, MDPI, vol. 11(13), pages 1-2, July.
    14. Daniel Cao Labora, 2020. "Fractional Integral Equations Tell Us How to Impose Initial Values in Fractional Differential Equations," Mathematics, MDPI, vol. 8(7), pages 1-17, July.
    15. Shiri, Babak & Baleanu, Dumitru, 2023. "All linear fractional derivatives with power functions’ convolution kernel and interpolation properties," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    16. Giacomo Ascione & Nikolai Leonenko & Enrica Pirozzi, 2022. "Non-local Solvable Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1284-1323, June.
    17. Muñoz-Vázquez, Aldo Jonathan & Martínez-Fuentes, Oscar & Fernández-Anaya, Guillermo, 2022. "Generalized PI control for robust stabilization of dynamical systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 22-35.
    18. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    19. Oscar Martínez-Fuentes & Fidel Meléndez-Vázquez & Guillermo Fernández-Anaya & José Francisco Gómez-Aguilar, 2021. "Analysis of Fractional-Order Nonlinear Dynamic Systems with General Analytic Kernels: Lyapunov Stability and Inequalities," Mathematics, MDPI, vol. 9(17), pages 1-29, August.
    20. Sergei Rogosin & Maryna Dubatovskaya, 2021. "Fractional Calculus in Russia at the End of XIX Century," Mathematics, MDPI, vol. 9(15), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:849-:d:766242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.