IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i6p594-d514427.html
   My bibliography  Save this article

General Fractional Integrals and Derivatives with the Sonine Kernels

Author

Listed:
  • Yuri Luchko

    (Department of Mathematics, Physics, and Chemistry, Beuth Technical University of Applied Sciences Berlin, Luxemburger Str. 10, 13353 Berlin, Germany)

Abstract

In this paper, we address the general fractional integrals and derivatives with the Sonine kernels on the spaces of functions with an integrable singularity at the point zero. First, the Sonine kernels and their important special classes and particular cases are discussed. In particular, we introduce a class of the Sonine kernels that possess an integrable singularity of power function type at the point zero. For the general fractional integrals and derivatives with the Sonine kernels from this class, two fundamental theorems of fractional calculus are proved. Then, we construct the n -fold general fractional integrals and derivatives and study their properties.

Suggested Citation

  • Yuri Luchko, 2021. "General Fractional Integrals and Derivatives with the Sonine Kernels," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:594-:d:514427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/6/594/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/6/594/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan G. Samko & Rogério P. Cardoso, 2003. "Integral equations of the first kind of Sonine type," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2003, pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasily E. Tarasov, 2024. "General Fractional Economic Dynamics with Memory," Mathematics, MDPI, vol. 12(15), pages 1-24, August.
    2. Maryam Al-Kandari & Latif A-M. Hanna & Yuri Luchko, 2022. "Operational Calculus for the General Fractional Derivatives of Arbitrary Order," Mathematics, MDPI, vol. 10(9), pages 1-17, May.
    3. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    4. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    5. Muñoz-Vázquez, Aldo Jonathan & Martínez-Fuentes, Oscar & Fernández-Anaya, Guillermo, 2022. "Generalized PI control for robust stabilization of dynamical systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 22-35.
    6. Isah, Sunday Simon & Fernandez, Arran & Özarslan, Mehmet Ali, 2023. "On bivariate fractional calculus with general univariate analytic kernels," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    7. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    8. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Yuri Luchko, 2023. "Fractional Integrals and Derivatives: “True” versus “False”," Mathematics, MDPI, vol. 11(13), pages 1-2, July.
    10. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    11. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    12. Vasily E. Tarasov, 2022. "General Non-Local Continuum Mechanics: Derivation of Balance Equations," Mathematics, MDPI, vol. 10(9), pages 1-43, April.
    13. Aldo Jonathan Muñoz-Vázquez & Guillermo Fernández-Anaya, 2024. "Uniformly Continuous Generalized Sliding Mode Control," Mathematics, MDPI, vol. 12(16), pages 1-19, August.
    14. Vasily E. Tarasov, 2022. "Fractional Dynamics with Depreciation and Obsolescence: Equations with Prabhakar Fractional Derivatives," Mathematics, MDPI, vol. 10(9), pages 1-34, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    2. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    3. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    4. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    5. Tarasov, Vasily E., 2023. "Nonlocal statistical mechanics: General fractional Liouville equations and their solutions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    6. Vasily E. Tarasov, 2021. "General Fractional Calculus: Multi-Kernel Approach," Mathematics, MDPI, vol. 9(13), pages 1-14, June.
    7. Sergei Rogosin & Maryna Dubatovskaya, 2021. "Fractional Calculus in Russia at the End of XIX Century," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    8. Vasily E. Tarasov, 2021. "General Fractional Vector Calculus," Mathematics, MDPI, vol. 9(21), pages 1-87, November.
    9. Yuri Luchko, 2021. "Special Functions of Fractional Calculus in the Form of Convolution Series and Their Applications," Mathematics, MDPI, vol. 9(17), pages 1-15, September.
    10. Vasily E. Tarasov, 2023. "General Fractional Noether Theorem and Non-Holonomic Action Principle," Mathematics, MDPI, vol. 11(20), pages 1-35, October.
    11. Hainaut, Donatien & Chen, Maggie & Scalas, Enrico, 2023. "The rough Hawkes process," LIDAM Discussion Papers ISBA 2023007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Vasily E. Tarasov, 2024. "General Fractional Economic Dynamics with Memory," Mathematics, MDPI, vol. 12(15), pages 1-24, August.
    13. Maryam Alkandari & Yuri Luchko, 2024. "Operational Calculus for the 1st-Level General Fractional Derivatives and Its Applications," Mathematics, MDPI, vol. 12(17), pages 1-23, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:594-:d:514427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.