IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1331-d1092462.html
   My bibliography  Save this article

Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples

Author

Listed:
  • Mazen Nassar

    (Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig 44519, Egypt)

  • Refah Alotaibi

    (Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Ahmed Elshahhat

    (Faculty of Technology and Development, Zagazig University, Zagazig 44519, Egypt)

Abstract

It often takes a lot of time to conduct life-testing studies on products or components. Units can be tested under more severe circumstances than usual, known as accelerated life tests, to reduce the testing period. This study’s goal is to look into certain estimation issues related to point and interval estimations for XLindley distribution under constant stress partially accelerated life tests with progressive Type-II censored samples. The maximum likelihood approach is utilized to acquire the point and interval estimates of the model parameters as well as the reliability function under normal use conditions. The Bayesian estimation method using the Monte Carlo Markov Chain procedure using the squared error loss function is also provided. Moreover, the Bayes credible intervals as well as the highest posterior density credible intervals of the different parameters are considered. To make comparisons between the proposed methods, a simulation study is conducted with various sample sizes and different censoring schemes. The usefulness of the suggested methodologies is then demonstrated by the analysis of two data sets. A summary of the major findings of the study can be found in the conclusion.

Suggested Citation

  • Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1331-:d:1092462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    2. N. Balakrishnan, 2007. "Rejoinder on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 290-296, August.
    3. Sanku Dey & Liang Wang & Mazen Nassar, 2022. "Inference on Nadarajah–Haghighi distribution with constant stress partially accelerated life tests under progressive type-II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(11), pages 2891-2912, August.
    4. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    5. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    6. Mazen Nassar & Ahmed Elshahhat, 2023. "Statistical Analysis of Inverse Weibull Constant-Stress Partially Accelerated Life Tests with Adaptive Progressively Type I Censored Data," Mathematics, MDPI, vol. 11(2), pages 1-29, January.
    7. Pareek, Bhuvanesh & Kundu, Debasis & Kumar, Sumit, 2009. "On progressively censored competing risks data for Weibull distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4083-4094, October.
    8. M. M. Mohie El-Din & S. E. Abu-Youssef & Nahed S. A. Ali & A. M. Abd El-Raheem, 2016. "Estimation in constant-stress accelerated life tests for extension of the exponential distribution under progressive censoring," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 253-273, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Ejaz Ahmed & Reza Arabi Belaghi & Abdulkadir Hussein & Alireza Safariyan, 2024. "New and Efficient Estimators of Reliability Characteristics for a Family of Lifetime Distributions under Progressive Censoring," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
    2. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Elshahhat & Refah Alotaibi & Mazen Nassar, 2022. "Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    2. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    3. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    4. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    5. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    6. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    7. Mohamed Sief & Xinsheng Liu & Abd El-Raheem Mohamed Abd El-Raheem, 2024. "Inference for a constant-stress model under progressive type-II censored data from the truncated normal distribution," Computational Statistics, Springer, vol. 39(5), pages 2791-2820, July.
    8. Mazen Nassar & Refah Alotaibi & Chunfang Zhang, 2022. "Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    9. Amit Singh Nayal & Bhupendra Singh & Vrijesh Tripathi & Abhishek Tyagi, 2024. "Analyzing stress-strength reliability $$\delta =\text{ P }[U," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2453-2472, June.
    10. Shu-Fei Wu & Yu-Lun Huang, 2024. "The Assessment of the Overall Lifetime Performance Index of Chen Products with Multiple Components," Mathematics, MDPI, vol. 12(13), pages 1-21, July.
    11. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    12. Olayan Albalawi & Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora & Basim S. O. Alsaedi, 2022. "Estimation of the Generalized Logarithmic Transformation Exponential Distribution under Progressively Type-II Censored Data with Application to the COVID-19 Mortality Rates," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
    13. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    14. Wu, Shuo-Jye & Huang, Syuan-Rong, 2017. "Planning two or more level constant-stress accelerated life tests with competing risks," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 1-8.
    15. Bander Al-Zahrani & Areej M. AL-Zaydi, 2022. "Moments of progressively type-II censored order statistics from the complementary exponential geometric distribution and associated inference," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1052-1065, June.
    16. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    17. Amal S. Hassan & Rana M. Mousa & Mahmoud H. Abu-Moussa, 2024. "Bayesian Analysis of Generalized Inverted Exponential Distribution Based on Generalized Progressive Hybrid Censoring Competing Risks Data," Annals of Data Science, Springer, vol. 11(4), pages 1225-1264, August.
    18. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    19. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.
    20. Wenjie Zhang & Wenhao Gui, 2022. "Statistical Inference and Optimal Design of Accelerated Life Testing for the Chen Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(9), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1331-:d:1092462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.