IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v117y2018icp45-61.html
   My bibliography  Save this article

Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion

Author

Listed:
  • Roozbeh, Mahdi

Abstract

Multicollinearity among the predictor variables is a serious problem in regression analysis. There are some classes of biased estimators for solving the problem in statistical literature. In these biased classes, estimation of the shrinkage parameter plays an important role in data analyzing. Using eigenvalue analysis, efforts have been made to develop skills and methods for computing risk function of the estimators in regression models. A modified estimator based on the QR decomposition to combat the multicollinearity problem of design matrix is proposed in partially linear regression model which makes the data to be less distorted than the other methods. The necessary and sufficient condition for the superiority of the partially generalized QR-based estimator over partially generalized least-squares estimator for selecting the shrinkage parameter is obtained. Under appropriate assumptions, the asymptotic bias and variance of the proposed estimators are obtained. Also, a generalized cross validation (GCV) criterion is proposed for selecting the optimal shrinkage parameter and the bandwidth of the kernel smoother and then, an extension of the GCV theorem is established to prove the convergence of the GCV mean. Finally, the Monté-Carlo simulation studies and a real application related to electricity consumption data are conducted to support our theoretical discussion.

Suggested Citation

  • Roozbeh, Mahdi, 2018. "Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 45-61.
  • Handle: RePEc:eee:csdana:v:117:y:2018:i:c:p:45-61
    DOI: 10.1016/j.csda.2017.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317301718
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jialiang Li & Wenyang Zhang & Zhengxiao Wu, 2011. "Optimal zone for bandwidth selection in semiparametric models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 701-717.
    2. Roozbeh, Mahdi, 2015. "Shrinkage ridge estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 56-74.
    3. M. Arashi & M. Janfada & M. Norouzirad, 2015. "Singular Ridge Regression With Stochastic Constraints," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(6), pages 1281-1292, March.
    4. Sarkar, Nityananda, 1996. "Mean square error matrix comparison of some estimators in linear regressions with multicollinearity," Statistics & Probability Letters, Elsevier, vol. 30(2), pages 133-138, October.
    5. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    6. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    7. Amini, Morteza & Roozbeh, Mahdi, 2015. "Optimal partial ridge estimation in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 26-40.
    8. Esra Akdeniz Duran & Fikri Akdeniz, 2012. "Efficiency of the modified jackknifed Liu-type estimator," Statistical Papers, Springer, vol. 53(2), pages 265-280, May.
    9. M. Arashi & T. Valizadeh, 2015. "Performance of Kibria’s methods in partial linear ridge regression model," Statistical Papers, Springer, vol. 56(1), pages 231-246, February.
    10. Hu Yang & Jianwen Xu, 2011. "Preliminary test Liu estimators based on the conflicting W, LR and LM tests in a regression model with multivariate Student-t error," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 275-292, May.
    11. Miller, D. & Golan, Amos & Judge, G., 1998. "Information Recovery in Simultaneous Equation Statistical Models," Staff General Research Papers Archive 1319, Iowa State University, Department of Economics.
    12. Roozbeh, M. & Arashi, M., 2013. "Feasible ridge estimator in partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 35-44.
    13. You, Jinhong & Chen, Gemai & Zhou, Yong, 2007. "Statistical inference of partially linear regression models with heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1539-1557, September.
    14. M. Hubert & P. Wijekoon, 2006. "Improvement of the Liu estimator in linear regression model," Statistical Papers, Springer, vol. 47(3), pages 471-479, June.
    15. repec:hum:journl:v:105:y:2012:i:1:p:164-175 is not listed on IDEAS
    16. Arashi, M. & Kibria, B.M. Golam & Norouzirad, M. & Nadarajah, S., 2014. "Improved preliminary test and Stein-rule Liu estimators for the ill-conditioned elliptical linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 53-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M Arashi & M Roozbeh & N A Hamzah & M Gasparini, 2021. "Ridge regression and its applications in genetic studies," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-17, April.
    2. Guoping Zeng & Sha Tao, 2023. "A Generalized Linear Transformation and Its Effects on Logistic Regression," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    3. Lei Qiao & Bing Wang, 2024. "Kernel-Based Multivariate Nonparametric CUSUM Multi-Chart for Detection of Abrupt Changes," Mathematics, MDPI, vol. 12(10), pages 1-12, May.
    4. Issam Dawoud & B. M. Golam Kibria, 2020. "A New Biased Estimator to Combat the Multicollinearity of the Gaussian Linear Regression Model," Stats, MDPI, vol. 3(4), pages 1-16, November.
    5. M. Nooi Asl & H. Bevrani & R. Arabi Belaghi & K. Mansson, 2021. "Ridge-type shrinkage estimators in generalized linear models with an application to prostate cancer data," Statistical Papers, Springer, vol. 62(2), pages 1043-1085, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    2. M. Arashi & Mahdi Roozbeh, 2019. "Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data," Statistical Papers, Springer, vol. 60(3), pages 667-686, June.
    3. Bahadır Yüzbaşı & S. Ejaz Ahmed & Dursun Aydın, 2020. "Ridge-type pretest and shrinkage estimations in partially linear models," Statistical Papers, Springer, vol. 61(2), pages 869-898, April.
    4. Hadi Emami, 2018. "Local influence for Liu estimators in semiparametric linear models," Statistical Papers, Springer, vol. 59(2), pages 529-544, June.
    5. Sivarajah Arumairajan & Pushpakanthie Wijekoon, 2017. "The generalized preliminary test estimator when different sets of stochastic restrictions are available," Statistical Papers, Springer, vol. 58(3), pages 729-747, September.
    6. Roozbeh, Mahdi, 2015. "Shrinkage ridge estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 56-74.
    7. Amini, Morteza & Roozbeh, Mahdi, 2015. "Optimal partial ridge estimation in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 26-40.
    8. Mohammad Arashi & Mina Norouzirad & S. Ejaz Ahmed & Bahadır Yüzbaşı, 2018. "Rank-based Liu regression," Computational Statistics, Springer, vol. 33(3), pages 1525-1561, September.
    9. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    10. M Arashi & M Roozbeh & N A Hamzah & M Gasparini, 2021. "Ridge regression and its applications in genetic studies," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-17, April.
    11. Emami, Hadi, 2015. "Influence diagnostic in ridge semiparametric models," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 106-113.
    12. M. Taavoni & M. Arashi, 2021. "Kernel estimation in semiparametric mixed effect longitudinal modeling," Statistical Papers, Springer, vol. 62(3), pages 1095-1116, June.
    13. Fikri Akdeniz & Mahdi Roozbeh, 2019. "Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models," Statistical Papers, Springer, vol. 60(5), pages 1717-1739, October.
    14. M. Arashi & T. Valizadeh, 2015. "Performance of Kibria’s methods in partial linear ridge regression model," Statistical Papers, Springer, vol. 56(1), pages 231-246, February.
    15. repec:hum:wpaper:sfb649dp2011-042 is not listed on IDEAS
    16. Mohammad Arashi & Mina Norouzirad & Mahdi Roozbeh & Naushad Mamode Khan, 2021. "A High-Dimensional Counterpart for the Ridge Estimator in Multicollinear Situations," Mathematics, MDPI, vol. 9(23), pages 1-11, November.
    17. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    18. Bindseil, Ulrich & König, Philipp Johann, 2011. "The economics of TARGET2 balances," SFB 649 Discussion Papers 2011-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Anand, Kartik & Gai, Prasanna & Marsili, Matteo, 2012. "Rollover risk, network structure and systemic financial crises," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1088-1100.
    20. repec:hum:wpaper:sfb649dp2011-045 is not listed on IDEAS
    21. Hofmann, Dirk & Qari, Salmai, 2011. "The law of attraction bilateral search and horizontal heterogeneity," SFB 649 Discussion Papers 2011-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    22. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:117:y:2018:i:c:p:45-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.