IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v34y2019i1d10.1007_s00180-018-0847-2.html
   My bibliography  Save this article

Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals

Author

Listed:
  • Manoj Chacko

    (University of Kerala)

  • Rakhi Mohan

    (University of Kerala)

Abstract

In medical studies or reliability analysis, the failure of individuals or items may be due to more than one cause or factor. These risk factors in some sense compete for the failure of the experimental units. Analysis of data in this circumstances is called competing risks analysis. In this paper, we consider the analysis of competing risk data under progressive type-II censoring by assuming the number of units removed at each stage is random and follows a binomial distribution. Bayes estimators are obtained by assuming the population under consider follows a Weibull distribution. A simulation study is carried out to study the performance of the different estimators derived in this paper. A real data set is also used for illustration.

Suggested Citation

  • Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
  • Handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0847-2
    DOI: 10.1007/s00180-018-0847-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-018-0847-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-018-0847-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manoj Kumar Rastogi & Yogesh Mani Tripathi & Shuo-Jye Wu, 2012. "Estimating the parameters of a bathtub-shaped distribution under progressive type-II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2389-2411, July.
    2. Siu Keung Tse & Chunyan Yang & Hak-Keung Yuen, 2000. "Statistical analysis of Weibull distributed lifetime data under Type II progressive censoring with binomial removals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(8), pages 1033-1043.
    3. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    4. Rita Aggarwala & N. Balakrishnan, 1996. "Recurrence relations for single and product moments of progressive Type-II right censored order statistics from exponential and truncated exponential distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(4), pages 757-771, December.
    5. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    6. Pareek, Bhuvanesh & Kundu, Debasis & Kumar, Sumit, 2009. "On progressively censored competing risks data for Weibull distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4083-4094, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Fathi & Al-Wageh A. Farghal & Ahmed A. Soliman, 2022. "Bayesian and Non-Bayesian Inference for Weibull Inverted Exponential Model under Progressive First-Failure Censoring Data," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    2. Junru Ren & Wenhao Gui, 2021. "Inference and optimal censoring scheme for progressively Type-II censored competing risks model for generalized Rayleigh distribution," Computational Statistics, Springer, vol. 36(1), pages 479-513, March.
    3. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    4. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    5. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subhankar Dutta & Suchandan Kayal, 2023. "Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring," Journal of Risk and Reliability, , vol. 237(4), pages 765-780, August.
    2. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    3. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    4. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    5. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    6. Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
    7. Mazen Nassar & Refah Alotaibi & Chunfang Zhang, 2022. "Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    8. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    9. Junru Ren & Wenhao Gui, 2021. "Inference and optimal censoring scheme for progressively Type-II censored competing risks model for generalized Rayleigh distribution," Computational Statistics, Springer, vol. 36(1), pages 479-513, March.
    10. Wu, Shuo-Jye & Huang, Syuan-Rong, 2012. "Progressively first-failure censored reliability sampling plans with cost constraint," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2018-2030.
    11. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    12. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    13. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    14. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    15. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    16. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    17. Syed Ejaz Ahmed & Reza Arabi Belaghi & Abdulkadir Hussein & Alireza Safariyan, 2024. "New and Efficient Estimators of Reliability Characteristics for a Family of Lifetime Distributions under Progressive Censoring," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
    18. M. M. Mohie El-Din & M. Nagy & M. H. Abu-Moussa, 2019. "Estimation and Prediction for Gompertz Distribution Under the Generalized Progressive Hybrid Censored Data," Annals of Data Science, Springer, vol. 6(4), pages 673-705, December.
    19. Jagdish Saran & Narinder Pushkarna & Shikha Sehgal, 2021. "Relationships for moments of the progressively Type-II right censored order statistics from the power Lomax distribution and the associated inference," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 191-212, December.
    20. Debasis Kundu, 2007. "Comments on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 276-278, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:34:y:2019:i:1:d:10.1007_s00180-018-0847-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.