IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v78y2024i1p105-135.html
   My bibliography  Save this article

On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring

Author

Listed:
  • Kundan Singh
  • Amulya Kumar Mahto
  • Yogesh Mani Tripathi

Abstract

In this paper, we discuss the inference for the competing risks model when the failure times follow Chen distribution. With assumption of two causes of failures, which are partially observed, are considered as independent. The existence and uniqueness of maximum likelihood estimates for model parameters are obtained under generalized progressive hybrid censoring. Also, we discussed the classical and Bayesian inferences of the model parameters under the assumption of restricted and nonrestricted parameters. Performance of classical point and interval estimators are compared with Bayesian point and interval estimators by conducting extensive simulation study. In addition to that, for illustration purpose, a real life example is discussed. Finally, some concluding remarks, regarding the presented model, are made.

Suggested Citation

  • Kundan Singh & Amulya Kumar Mahto & Yogesh Mani Tripathi, 2024. "On partially observed competing risks model for Chen distribution under generalized progressive hybrid censoring," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(1), pages 105-135, February.
  • Handle: RePEc:bla:stanee:v:78:y:2024:i:1:p:105-135
    DOI: 10.1111/stan.12308
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12308
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Liang & Tripathi, Yogesh Mani & Lodhi, Chandrakant & Zuo, Xuanjia, 2022. "Inference for constant-stress Weibull competing risks model under generalized progressive hybrid censoring," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 70-83.
    2. Liang Wang & Ke Wu & Yogesh Mani Tripathi & Chandrakant Lodhi, 2022. "Reliability analysis of multicomponent stress–strength reliability from a bathtub-shaped distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(1), pages 122-142, January.
    3. Manoj Kumar Rastogi & Yogesh Mani Tripathi & Shuo-Jye Wu, 2012. "Estimating the parameters of a bathtub-shaped distribution under progressive type-II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2389-2411, July.
    4. Sanku Dey & Liang Wang & Mazen Nassar, 2022. "Inference on Nadarajah–Haghighi distribution with constant stress partially accelerated life tests under progressive type-II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(11), pages 2891-2912, August.
    5. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    6. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    7. Rui Hua & Wenhao Gui, 2022. "Inference for copula-based dependent competing risks model with step-stress accelerated life test under generalized progressive hybrid censoring," Computational Statistics, Springer, vol. 37(5), pages 2399-2436, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    2. Zhang, Fode & Shi, Yimin, 2016. "Geometry of exponential family with competing risks and censored data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 234-245.
    3. Subhankar Dutta & Suchandan Kayal, 2023. "Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring," Journal of Risk and Reliability, , vol. 237(4), pages 765-780, August.
    4. Rui Hua & Wenhao Gui, 2022. "Inference for copula-based dependent competing risks model with step-stress accelerated life test under generalized progressive hybrid censoring," Computational Statistics, Springer, vol. 37(5), pages 2399-2436, November.
    5. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    6. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    7. Bhattacharya, Ritwik & Pradhan, Biswabrata & Dewanji, Anup, 2015. "Computation of optimum reliability acceptance sampling plans in presence of hybrid censoring," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 91-100.
    8. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.
    9. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    10. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    11. Syed Ejaz Ahmed & Reza Arabi Belaghi & Abdulkadir Hussein & Alireza Safariyan, 2024. "New and Efficient Estimators of Reliability Characteristics for a Family of Lifetime Distributions under Progressive Censoring," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
    12. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    13. López-Fidalgo, J. & Rivas-López, M.J., 2014. "Optimal experimental designs for partial likelihood information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 859-867.
    14. Tzong-Ru Tsai & Yuhlong Lio & Wei-Chen Ting, 2021. "EM Algorithm for Mixture Distributions Model with Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(19), pages 1-18, October.
    15. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    16. Soumya Roy & Biswabrata Pradhan, 2023. "Inference for log‐location‐scale family of distributions under competing risks with progressive type‐I interval censored data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 208-232, May.
    17. Mohammad Z. Raqab & Omar M. Bdair & Fahad M. Al-Aboud, 2018. "Inference for the two-parameter bathtub-shaped distribution based on record data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 229-253, April.
    18. Kapil Kumar & Shrawan Kumar & Renu Garg & Indrajeet Kumar, 2024. "Reliability estimation for inverse Pareto lifetime model based on unified hybrid censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2473-2482, June.
    19. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    20. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:78:y:2024:i:1:p:105-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.