IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2178-d1140092.html
   My bibliography  Save this article

A Novel Imputation Model for Missing Concrete Dam Monitoring Data

Author

Listed:
  • Xinran Cui

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Hao Gu

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Chongshi Gu

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Wenhan Cao

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Jiayi Wang

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

Abstract

To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring data are often missing due to failure of monitoring equipment, human error and other factors that cause difficulties in diagnosis of dam safety and failure to precisely predict their deformation. In this paper, a new method for imputing missing deformation data is proposed. First, since the traditional deformation increment speed distance index of the deformation similarity index does not take into account the fact that there is little change in deformations occurring in two consecutive days, the denominator of the index tends to be equal to zero. In this paper, an improved index for solving this problem is proposed. A combined weighting method for calculating the deformation similarity comprehensive index and the k -means clustering method is then proposed and used to classify deformation monitoring points. Subsequently, a panel data model that imputes different types of missing data is established. The method proposed in this paper can impute missing concrete dam deformation data more accurately; therefore, it can effectively solve the missing deformation monitoring data problem.

Suggested Citation

  • Xinran Cui & Hao Gu & Chongshi Gu & Wenhan Cao & Jiayi Wang, 2023. "A Novel Imputation Model for Missing Concrete Dam Monitoring Data," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2178-:d:1140092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Wei & Chongshi Gu & Xiao Fu, 2021. "Processing Method of Missing Data in Dam Safety Monitoring," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, July.
    2. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raymundo M. Campos-Vázquez, 2013. "Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 23-54, November.
    2. Paul T. von Hippel, 2013. "Should a Normal Imputation Model be Modified to Impute Skewed Variables?," Sociological Methods & Research, , vol. 42(1), pages 105-138, February.
    3. Siedschlag Iulia & Kaitila Ville & McQuinn John & Zhang Xiaoheng, 2014. "International Investment and Firm Performance: Empirical Evidence from Small Open Economies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 234(6), pages 662-687, December.
    4. Miller, Elizabeth A. & Paschall, Katherine W. & Azar, Sandra T., 2017. "Latent classes of older foster youth: Prospective associations with outcomes and exits from the foster care system during the transition to adulthood," Children and Youth Services Review, Elsevier, vol. 79(C), pages 495-505.
    5. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    6. Nancy, Jane Y. & Khanna, Nehemiah H. & Arputharaj, Kannan, 2017. "Imputing missing values in unevenly spaced clinical time series data to build an effective temporal classification framework," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 63-79.
    7. Thomas Masterson & Kijong Kim & Fernando Rios-Avila, 2016. "Simulations of Employment for Individuals in LIMTCP Consumption-poor Households in Tanzania and Ghana, 2012," Economics Working Paper Archive wp_871, Levy Economics Institute.
    8. McDonough, Ian K. & Millimet, Daniel L., 2017. "Missing data, imputation, and endogeneity," Journal of Econometrics, Elsevier, vol. 199(2), pages 141-155.
    9. Hamrick, Karen S., 2012. "Nonresponse Bias Analysis of Body Mass Index in the Eating and Health Module," Technical Bulletins 184303, United States Department of Agriculture, Economic Research Service.
    10. Lingyun Lyu & Yu Cheng & Abdus S. Wahed, 2023. "Imputation‐based Q‐learning for optimizing dynamic treatment regimes with right‐censored survival outcome," Biometrics, The International Biometric Society, vol. 79(4), pages 3676-3689, December.
    11. Yijie Xue & Nicole Lazar, 2012. "Empirical likelihood-based hot deck imputation methods," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 629-646.
    12. Marcello D’Orazio, 2015. "Integration and imputation of survey data in R: the StatMatch package," Romanian Statistical Review, Romanian Statistical Review, vol. 63(2), pages 57-68, June.
    13. Zhong, Hua & Hu, Wuyang, 2015. "Farmers’ Willingness to Engage in Best Management Practices: an Application of Multiple Imputation," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196962, Southern Agricultural Economics Association.
    14. Thomas Masterson, 2014. "Quality of Statistical Match and Employment Simulations Used in the Estimation of the Levy Institute Measure of Time and Income Poverty (LIMTIP) for South Korea, 2009," Economics Working Paper Archive wp_793, Levy Economics Institute.
    15. Yanqing Sun & Li Qi & Fei Heng & Peter B. Gilbert, 2020. "A hybrid approach for the stratified mark‐specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 791-814, August.
    16. Młodak Andrzej, 2021. "An application of a complex measure to model–based imputation in business statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 1-28, March.
    17. Thomas Masterson, 2012. "Simulations of Full-Time Employment and Household Work in the Levy Institute Measure of Time and Income Poverty (LIMTIP) for Argentina, Chile, and Mexico," Economics Working Paper Archive wp_727, Levy Economics Institute.
    18. Chiara Elena Dalla & Menon Martina & Perali Federico, 2019. "An Integrated Database to Measure Living Standards," Journal of Official Statistics, Sciendo, vol. 35(3), pages 531-576, September.
    19. Nicklas Pettersson, 2013. "Bias reduction of finite population imputation by kernel methods," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 139-160, March.
    20. Tina Peterson & Linda Chatters & Robert Taylor & Ann Nguyen, 2014. "Subjective Well-Being of Older African Americans with DSM IV Psychiatric Disorders," Journal of Happiness Studies, Springer, vol. 15(5), pages 1179-1196, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2178-:d:1140092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.