IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2178-d1140092.html
   My bibliography  Save this article

A Novel Imputation Model for Missing Concrete Dam Monitoring Data

Author

Listed:
  • Xinran Cui

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Hao Gu

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Chongshi Gu

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Wenhan Cao

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

  • Jiayi Wang

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China)

Abstract

To ensure the safety of concrete dams, a large number of monitoring instruments are embedded in the bodies and foundations of the dams. However, monitoring data are often missing due to failure of monitoring equipment, human error and other factors that cause difficulties in diagnosis of dam safety and failure to precisely predict their deformation. In this paper, a new method for imputing missing deformation data is proposed. First, since the traditional deformation increment speed distance index of the deformation similarity index does not take into account the fact that there is little change in deformations occurring in two consecutive days, the denominator of the index tends to be equal to zero. In this paper, an improved index for solving this problem is proposed. A combined weighting method for calculating the deformation similarity comprehensive index and the k -means clustering method is then proposed and used to classify deformation monitoring points. Subsequently, a panel data model that imputes different types of missing data is established. The method proposed in this paper can impute missing concrete dam deformation data more accurately; therefore, it can effectively solve the missing deformation monitoring data problem.

Suggested Citation

  • Xinran Cui & Hao Gu & Chongshi Gu & Wenhan Cao & Jiayi Wang, 2023. "A Novel Imputation Model for Missing Concrete Dam Monitoring Data," Mathematics, MDPI, vol. 11(9), pages 1-24, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2178-:d:1140092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Wei & Chongshi Gu & Xiao Fu, 2021. "Processing Method of Missing Data in Dam Safety Monitoring," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, July.
    2. Rebecca R. Andridge & Roderick J. A. Little, 2010. "A Review of Hot Deck Imputation for Survey Non‐response," International Statistical Review, International Statistical Institute, vol. 78(1), pages 40-64, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raymundo M. Campos-Vázquez, 2013. "Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 23-54, November.
    2. Paul T. von Hippel, 2013. "Should a Normal Imputation Model be Modified to Impute Skewed Variables?," Sociological Methods & Research, , vol. 42(1), pages 105-138, February.
    3. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    4. Nancy, Jane Y. & Khanna, Nehemiah H. & Arputharaj, Kannan, 2017. "Imputing missing values in unevenly spaced clinical time series data to build an effective temporal classification framework," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 63-79.
    5. McDonough, Ian K. & Millimet, Daniel L., 2017. "Missing data, imputation, and endogeneity," Journal of Econometrics, Elsevier, vol. 199(2), pages 141-155.
    6. Marcello D’Orazio, 2015. "Integration and imputation of survey data in R: the StatMatch package," Romanian Statistical Review, Romanian Statistical Review, vol. 63(2), pages 57-68, June.
    7. Zhong, Hua & Hu, Wuyang, 2015. "Farmers’ Willingness to Engage in Best Management Practices: an Application of Multiple Imputation," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196962, Southern Agricultural Economics Association.
    8. Yanqing Sun & Li Qi & Fei Heng & Peter B. Gilbert, 2020. "A hybrid approach for the stratified mark‐specific proportional hazards model with missing covariates and missing marks, with application to vaccine efficacy trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 791-814, August.
    9. Thomas Masterson, 2012. "Simulations of Full-Time Employment and Household Work in the Levy Institute Measure of Time and Income Poverty (LIMTIP) for Argentina, Chile, and Mexico," Economics Working Paper Archive wp_727, Levy Economics Institute.
    10. Chiara Elena Dalla & Menon Martina & Perali Federico, 2019. "An Integrated Database to Measure Living Standards," Journal of Official Statistics, Sciendo, vol. 35(3), pages 531-576, September.
    11. Nicklas Pettersson, 2013. "Bias reduction of finite population imputation by kernel methods," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 14(1), pages 139-160, March.
    12. Daniel Araya & Guillermo Paraje, 2018. "The impact of prices on alcoholic beverage consumption in Chile," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
    13. Jeongsub Choi & Youngdoo Son & Myong K. Jeong, 2024. "Gaussian kernel with correlated variables for incomplete data," Annals of Operations Research, Springer, vol. 341(1), pages 223-244, October.
    14. Sullivan, Danielle & Andridge, Rebecca, 2015. "A hot deck imputation procedure for multiply imputing nonignorable missing data: The proxy pattern-mixture hot deck," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 173-185.
    15. Soyeon Ahn & John M. Abbamonte, 2020. "A new approach for handling missing correlation values for meta‐analytic structural equation modeling: Corboundary R package," Campbell Systematic Reviews, John Wiley & Sons, vol. 16(1), March.
    16. Cheng, Xiaoyue & Cook, Dianne & Hofmann, Heike, 2015. "Visually Exploring Missing Values in Multivariable Data Using a Graphical User Interface," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i06).
    17. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    18. Constantin Rudolf Salomo Bürgi, 2023. "How to deal with missing observations in surveys of professional forecasters," Journal of Applied Economics, Taylor & Francis Journals, vol. 26(1), pages 2185975-218, December.
    19. Ton de Waal & Wieger Coutinho, 2017. "Preserving Logical Relations while Estimating Missing Values," Romanian Statistical Review, Romanian Statistical Review, vol. 65(3), pages 47-59, September.
    20. Ding, Wei & Song, Peter X.-K., 2016. "EM algorithm in Gaussian copula with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2178-:d:1140092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.