IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/9950874.html
   My bibliography  Save this article

Processing Method of Missing Data in Dam Safety Monitoring

Author

Listed:
  • Wei Wei
  • Chongshi Gu
  • Xiao Fu

Abstract

A large amount of data obtained by dam safety monitoring provides the basis to evaluate the dam operation state. Due to the interference caused by equipment failure and human error, it is common or even inevitable to suffer the loss of measurement data. Most of the traditional data processing methods for dam monitoring ignore the actual correlation between different measurement points, which brings difficulties to the objective diagnosis of dam safety and even leads to misdiagnosis. Therefore, it is necessary to conduct further study on how to process the missing data in dam safety monitoring. In this study, a data processing method based on partial distance combining fuzzy C-means with long short-term memory (PDS-FCM-LSTM) was proposed to deal with the data missing from dam monitoring. Based on the fuzzy clustering performed for the measurement points of the same category deployed on the dam, the membership degree of each measurement point to cluster center was described by using the fuzzy C-means clustering algorithm based on partial distance (PDS-FCM), so as to determine the clustering results and preprocess the missing data of corresponding measurement points. Then, the bidirectional long short-term memory (LSTM) network was applied to explore the pattern of changes of measurement values under identical clustering conditions, thus processing the data missing from monitoring effectively.

Suggested Citation

  • Wei Wei & Chongshi Gu & Xiao Fu, 2021. "Processing Method of Missing Data in Dam Safety Monitoring," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, July.
  • Handle: RePEc:hin:jnlmpe:9950874
    DOI: 10.1155/2021/9950874
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9950874.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/9950874.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9950874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinran Cui & Hao Gu & Chongshi Gu & Wenhan Cao & Jiayi Wang, 2023. "A Novel Imputation Model for Missing Concrete Dam Monitoring Data," Mathematics, MDPI, vol. 11(9), pages 1-24, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:9950874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.