IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1082-d1076146.html
   My bibliography  Save this article

Autocorrelation and Parameter Estimation in a Bayesian Change Point Model

Author

Listed:
  • Rui Qiang

    (Department of Statistics, The Ohio State University, Columbus, OH 43210, USA)

  • Eric Ruggieri

    (Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA 01610, USA)

Abstract

A piecewise function can sometimes provide the best fit to a time series. The breaks in this function are called change points, which represent the point at which the statistical properties of the model change. Often, the exact placement of the change points is unknown, so an efficient algorithm is required to combat the combinatorial explosion in the number of potential solutions to the multiple change point problem. Bayesian solutions to the multiple change point problem can provide uncertainty estimates on both the number and location of change points in a dataset, but there has not yet been a systematic study to determine how the choice of hyperparameters or the presence of autocorrelation affects the inference made by the model. Here, we propose Bayesian model averaging as a way to address the uncertainty in the choice of hyperparameters and show how this approach highlights the most probable solution to the problem. Autocorrelation is addressed through a pre-whitening technique, which is shown to eliminate spurious change points that emerge due to a red noise process. However, pre-whitening a dataset tends to make true change points harder to detect. After an extensive simulation study, the model is applied to two climate applications: the Pacific Decadal Oscillation and a global surface temperature anomalies dataset.

Suggested Citation

  • Rui Qiang & Eric Ruggieri, 2023. "Autocorrelation and Parameter Estimation in a Bayesian Change Point Model," Mathematics, MDPI, vol. 11(5), pages 1-22, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1082-:d:1076146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    2. Western, Bruce & Kleykamp, Meredith, 2004. "A Bayesian Change Point Model for Historical Time Series Analysis," Political Analysis, Cambridge University Press, vol. 12(4), pages 354-374.
    3. Ross, Gordon J., 2015. "Parametric and Nonparametric Sequential Change Detection in R: The cpm Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i03).
    4. Eugene Canjels & Mark W. Watson, 1997. "Estimating Deterministic Trends In The Presence Of Serially Correlated Errors," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 184-200, May.
    5. Paul Fearnhead & Zhen Liu, 2007. "On‐line inference for multiple changepoint problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 589-605, September.
    6. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    7. Anindya Roy & Barry Falk & Wayne A. Fuller, 2004. "Testing for Trend in the Presence of Autoregressive Error," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1082-1091, December.
    8. Nicolas Chopin, 2007. "Dynamic Detection of Change Points in Long Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 349-366, June.
    9. Thies, Sven & Molnár, Peter, 2018. "Bayesian change point analysis of Bitcoin returns," Finance Research Letters, Elsevier, vol. 27(C), pages 223-227.
    10. Bradley P. Carlin & Alan E. Gelfand & Adrian F. M. Smith, 1992. "Hierarchical Bayesian Analysis of Changepoint Problems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 389-405, June.
    11. Shi, Xuesheng & Gallagher, Colin & Lund, Robert & Killick, Rebecca, 2022. "A comparison of single and multiple changepoint techniques for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    12. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    13. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    14. Eric Ruggieri, 2018. "A pruned recursive solution to the multiple change point problem," Computational Statistics, Springer, vol. 33(2), pages 1017-1045, June.
    15. Peter Guttorp & Stephan R. Sain & Christopher K. Wikle & Colin Gallagher & Robert Lund & Michael Robbins, 2012. "Changepoint detection in daily precipitation data," Environmetrics, John Wiley & Sons, Ltd., vol. 23(5), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    2. Eric Ruggieri, 2018. "A pruned recursive solution to the multiple change point problem," Computational Statistics, Springer, vol. 33(2), pages 1017-1045, June.
    3. David Ardia & Arnaud Dufays & Carlos Ordás Criado, 2024. "Linking Frequentist and Bayesian Change-Point Methods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1155-1168, October.
    4. Ahelegbey, Daniel Felix & Billio, Monica & Casarin, Roberto, 2024. "Modeling Turning Points in the Global Equity Market," Econometrics and Statistics, Elsevier, vol. 30(C), pages 60-75.
    5. Kleiber, Christian, 2016. "Structural Change in (Economic) Time Series," Working papers 2016/06, Faculty of Business and Economics - University of Basel.
    6. Chao Du & Chu-Lan Michael Kao & S. C. Kou, 2016. "Stepwise Signal Extraction via Marginal Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 314-330, March.
    7. Lindeløv, Jonas Kristoffer, 2020. "mcp: An R Package for Regression With Multiple Change Points," OSF Preprints fzqxv, Center for Open Science.
    8. Nora M. Villanueva & Marta Sestelo & Miguel M. Fonseca & Javier Roca-Pardiñas, 2023. "seq2R: An R Package to Detect Change Points in DNA Sequences," Mathematics, MDPI, vol. 11(10), pages 1-20, May.
    9. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    10. Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
    11. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    12. Patrik Nosil & Zachariah Gompert & Daniel J. Funk, 2024. "Divergent dynamics of sexual and habitat isolation at the transition between stick insect populations and species," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Hervé Le Bihan, 2004. "Tests de ruptures : une application au PIB tendanciel français," Économie et Prévision, Programme National Persée, vol. 163(2), pages 133-154.
    14. Badi H. Baltagi & Chihwa Kao & Long Liu, 2014. "Test of Hypotheses in a Time Trend Panel Data Model with Serially Correlated Error Component Disturbances," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 347-394, Emerald Group Publishing Limited.
    15. Park, Beum-Jo, 2022. "The COVID-19 pandemic, volatility, and trading behavior in the bitcoin futures market," Research in International Business and Finance, Elsevier, vol. 59(C).
    16. James Nolan & Zoe Laulederkind, 2022. "Plane to See? Empirical Analysis of the 1999–2006 Air Cargo Cartel," Advances in Airline Economics, in: The International Air Cargo Industry, volume 9, pages 241-262, Emerald Group Publishing Limited.
    17. Zeileis, Achim, 2004. "Econometric Computing with HC and HAC Covariance Matrix Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i10).
    18. Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
    19. Amey Sapre, 2014. "Madhya Pradesh: Does Agriculture Determine the State’s Growth Trajectory?," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 8(1), pages 39-57, February.
    20. Davis, Richard A. & Hancock, Stacey A. & Yao, Yi-Ching, 2016. "On consistency of minimum description length model selection for piecewise autoregressions," Journal of Econometrics, Elsevier, vol. 194(2), pages 360-368.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1082-:d:1076146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.