IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v59y2007i2p349-366.html
   My bibliography  Save this article

Dynamic Detection of Change Points in Long Time Series

Author

Listed:
  • Nicolas Chopin

Abstract

No abstract is available for this item.

Suggested Citation

  • Nicolas Chopin, 2007. "Dynamic Detection of Change Points in Long Time Series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 349-366, June.
  • Handle: RePEc:spr:aistmt:v:59:y:2007:i:2:p:349-366
    DOI: 10.1007/s10463-006-0053-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-006-0053-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-006-0053-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
    2. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    3. Nicolas Chopin, 2002. "Central Limit Theorem for Sequential Monte Carlo Methods and its Applications to Bayesian Inference," Working Papers 2002-44, Center for Research in Economics and Statistics.
    4. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    5. Chopin, Nicolas & Pelgrin, Florian, 2004. "Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation," Journal of Econometrics, Elsevier, vol. 123(2), pages 327-344, December.
    6. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    7. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yixiao Li & Gloria Lin & Thomas Lau & Ruochen Zeng, 2019. "A Review of Changepoint Detection Models," Papers 1908.07136, arXiv.org.
    2. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
    3. Ruggieri, Eric & Antonellis, Marcus, 2016. "An exact approach to Bayesian sequential change point detection," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 71-86.
    4. Hongyue Zhu & Hong Jiao & Wei Gao & Xiangbin Meng, 2023. "Bayesian Change-Point Analysis Approach to Detecting Aberrant Test-Taking Behavior Using Response Times," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 490-520, August.
    5. Jian He & Asma Khedher & Peter Spreij, 2021. "A Kalman particle filter for online parameter estimation with applications to affine models," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 353-403, July.
    6. Eric Ruggieri, 2018. "A pruned recursive solution to the multiple change point problem," Computational Statistics, Springer, vol. 33(2), pages 1017-1045, June.
    7. Chopin, N. & Del Moral, P. & Rubenthaler, S., 2011. "Stability of Feynman-Kac formulae with path-dependent potentials," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 38-60, January.
    8. Lu Shaochuan, 2023. "Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation," International Statistical Review, International Statistical Institute, vol. 91(1), pages 88-113, April.
    9. Rui Qiang & Eric Ruggieri, 2023. "Autocorrelation and Parameter Estimation in a Bayesian Change Point Model," Mathematics, MDPI, vol. 11(5), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    2. Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
    3. Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
    4. He, Zhongfang & Maheu, John M., 2010. "Real time detection of structural breaks in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
    5. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.
    6. Jian He & Asma Khedher & Peter Spreij, 2021. "A Kalman particle filter for online parameter estimation with applications to affine models," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 353-403, July.
    7. repec:wyi:journl:002173 is not listed on IDEAS
    8. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    9. Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011. "state-observation sampling and the econometrics of learning models," HEC Research Papers Series 947, HEC Paris.
    10. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    11. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    12. Christopher Nam & John Aston & Adam Johansen, 2014. "Parallel sequential Monte Carlo samplers and estimation of the number of states in a Hidden Markov Model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 553-575, June.
    13. Rimstad, Kjartan & Omre, Henning, 2013. "Approximate posterior distributions for convolutional two-level hidden Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 187-200.
    14. Nicolas Chopin, 2002. "Central Limit Theorem for Sequential Monte Carlo Methods and its Applications to Bayesian Inference," Working Papers 2002-44, Center for Research in Economics and Statistics.
    15. Marco J. Lombardi & Simon J. Godsill, 2004. "On-line Bayesian estimation of AR signals in symmetric alpha-stable noise," Econometrics Working Papers Archive wp2004_05, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    16. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    17. Saikat Saha, 2015. "Noise Robust Online Inference for Linear Dynamic Systems," Papers 1504.05723, arXiv.org.
    18. Rutger Jan Lange, 2020. "Bellman filtering for state-space models," Tinbergen Institute Discussion Papers 20-052/III, Tinbergen Institute, revised 19 May 2021.
    19. Elmar Mertens & James M. Nason, 2020. "Inflation and professional forecast dynamics: An evaluation of stickiness, persistence, and volatility," Quantitative Economics, Econometric Society, vol. 11(4), pages 1485-1520, November.
    20. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    21. Hammer, Hugo & Tjelmeland, Håkon, 2011. "Approximate forward-backward algorithm for a switching linear Gaussian model," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 154-167, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:59:y:2007:i:2:p:349-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.