IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i2p339-d1029511.html
   My bibliography  Save this article

An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems

Author

Listed:
  • Mostafa Elshahed

    (Electrical Engineering Department, Engineering and Information Technology College, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
    Electrical Power Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt)

  • Mohamed A. Tolba

    (Reactors Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 11787, Egypt
    Electrical Power Systems Department, National Research University “MPEI”, 111250 Moscow, Russia)

  • Ali M. El-Rifaie

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

  • Ahmed Ginidi

    (Department of Electrical Power Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt)

  • Abdullah Shaheen

    (Department of Electrical Power Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt)

  • Shazly A. Mohamed

    (Electrical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt)

Abstract

Attaining highly secure and safe operation of the grid with acceptable voltage levels has become a difficult issue for electricity companies that must adopt remedial actions. The usage of a PV solar farm inverter as a static synchronous compensator (or PVSTATCOM device) throughout the night has recently been proposed as a way to enhance the system performance. In this article, the novel artificial rabbits’ optimization algorithm (AROA) is developed for minimizing both the daily energy losses and the daily voltage profile considering different 24 h loadings. The novel AROA is inspired from the natural surviving strategies of rabbits. The novel AROA is tested on a typical IEEE 33-node distribution network including three scenarios. Different scenarios are implemented considering PV/STATCOM allocations throughout the day. The effectiveness of the proposed AROA is demonstrated in comparison to differential evolution (DE) algorithm and golden search optimization (GSO). The PVSTATCOM is adequately allocated based on the proposed AROA, where the energy losses are greatly reduced with 54.36% and the voltage deviations are greatly improved with 43.29%. Moreover, the proposed AROA provides no violations in all constraints while DE fails to achieve these limits. Therefore, the proposed AROA shows greater dependability than DE and GSO. Moreover, the voltage profiles at all distribution nodes all over the daytime hours are more than the minimum limit of 95%.

Suggested Citation

  • Mostafa Elshahed & Mohamed A. Tolba & Ali M. El-Rifaie & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2023. "An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:339-:d:1029511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/2/339/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/2/339/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Zhenhua & Kang, Le & Li, Liwei & Wang, Licheng & Wang, Kai, 2022. "A combined state-of-charge estimation method for lithium-ion battery using an improved BGRU network and UKF," Energy, Elsevier, vol. 259(C).
    2. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Adel A. Abou El-Ela & Ragab A. El-Sehiemy & Abdullah M. Shaheen & Aya R. Ellien, 2022. "Review on Active Distribution Networks with Fault Current Limiters and Renewable Energy Resources," Energies, MDPI, vol. 15(20), pages 1-30, October.
    4. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    5. Abdullah Shaheen & Ragab El-Sehiemy & Salah Kamel & Ali Selim, 2022. "Optimal Operational Reliability and Reconfiguration of Electrical Distribution Network Based on Jellyfish Search Algorithm," Energies, MDPI, vol. 15(19), pages 1-14, September.
    6. David Rivera & Daniel Guillen & Jonathan C. Mayo-Maldonado & Jesus E. Valdez-Resendiz & Gerardo Escobar, 2021. "Power Grid Dynamic Performance Enhancement via STATCOM Data-Driven Control," Mathematics, MDPI, vol. 9(19), pages 1-21, September.
    7. Gasperic, Samo & Mihalic, Rafael, 2019. "Estimation of the efficiency of FACTS devices for voltage-stability enhancement with PV area criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 144-156.
    8. Dezhi Li & Dongfang Yang & Liwei Li & Licheng Wang & Kai Wang, 2022. "Electrochemical Impedance Spectroscopy Based on the State of Health Estimation for Lithium-Ion Batteries," Energies, MDPI, vol. 15(18), pages 1-26, September.
    9. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    10. Reza Sirjani, 2018. "Optimal Placement and Sizing of PV-STATCOM in Power Systems Using Empirical Data and Adaptive Particle Swarm Optimization," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Hejun & Pirouzi, Sasan, 2024. "Energy management system based on economic Flexi-reliable operation for the smart distribution network including integrated energy system of hydrogen storage and renewable sources," Energy, Elsevier, vol. 293(C).
    2. Houssem Ben Aribia & Ali M. El-Rifaie & Mohamed A. Tolba & Abdullah Shaheen & Ghareeb Moustafa & Fahmi Elsayed & Mostafa Elshahed, 2023. "Growth Optimizer for Parameter Identification of Solar Photovoltaic Cells and Modules," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    3. Oscar Danilo Montoya & Walter Gil-González & Jesus C. Hernández, 2023. "Efficient Integration of Fixed-Step Capacitor Banks and D-STATCOMs in Radial and Meshed Distribution Networks Considering Daily Operation Curves," Energies, MDPI, vol. 16(8), pages 1-23, April.
    4. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2023. "System Economy Improvement and Risk Shortening by Fuel Cell-UPFC Placement in a Wind-Combined System," Energies, MDPI, vol. 16(4), pages 1-30, February.
    5. Ghareeb Moustafa & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Hany S. E. Mansour, 2023. "A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
    6. Víctor M. Garrido-Arévalo & Walter Gil-González & Oscar Danilo Montoya & Harold R. Chamorro & Jorge Mírez, 2023. "Efficient Allocation and Sizing the PV-STATCOMs in Electrical Distribution Grids Using Mixed-Integer Convex Approximation," Energies, MDPI, vol. 16(20), pages 1-19, October.
    7. Abdullah M. Shaheen & Ragab A. El-Sehiemy & Ahmed Ginidi & Abdallah M. Elsayed & Saad F. Al-Gahtani, 2023. "Optimal Allocation of PV-STATCOM Devices in Distribution Systems for Energy Losses Minimization and Voltage Profile Improvement via Hunter-Prey-Based Algorithm," Energies, MDPI, vol. 16(6), pages 1-20, March.
    8. Ismail Marouani & Tawfik Guesmi & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Saleh Albadran & Hsan Hadj Abdallah & Salem Rahmani, 2023. "Optimized FACTS Devices for Power System Enhancement: Applications and Solving Methods," Sustainability, MDPI, vol. 15(12), pages 1-58, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zedequias Machado Alves & Renata Mota Martins & Gustavo Marchesan & Ghendy Cardoso Junior, 2022. "Metaheuristic for the Allocation and Sizing of PV-STATCOMs for Ancillary Service Provision," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Abdullah M. Shaheen & Ragab A. El-Sehiemy & Ahmed Ginidi & Abdallah M. Elsayed & Saad F. Al-Gahtani, 2023. "Optimal Allocation of PV-STATCOM Devices in Distribution Systems for Energy Losses Minimization and Voltage Profile Improvement via Hunter-Prey-Based Algorithm," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    4. Ghareeb Moustafa & Mostafa Elshahed & Ahmed R. Ginidi & Abdullah M. Shaheen & Hany S. E. Mansour, 2023. "A Gradient-Based Optimizer with a Crossover Operator for Distribution Static VAR Compensator (D-SVC) Sizing and Placement in Electrical Systems," Mathematics, MDPI, vol. 11(5), pages 1-30, February.
    5. Víctor M. Garrido-Arévalo & Walter Gil-González & Oscar Danilo Montoya & Harold R. Chamorro & Jorge Mírez, 2023. "Efficient Allocation and Sizing the PV-STATCOMs in Electrical Distribution Grids Using Mixed-Integer Convex Approximation," Energies, MDPI, vol. 16(20), pages 1-19, October.
    6. Buchicchio, Emanuele & De Angelis, Alessio & Santoni, Francesco & Carbone, Paolo & Bianconi, Francesco & Smeraldi, Fabrizio, 2023. "Battery SOC estimation from EIS data based on machine learning and equivalent circuit model," Energy, Elsevier, vol. 283(C).
    7. Ming Zhang & Yanshuo Liu & Dezhi Li & Xiaoli Cui & Licheng Wang & Liwei Li & Kai Wang, 2023. "Electrochemical Impedance Spectroscopy: A New Chapter in the Fast and Accurate Estimation of the State of Health for Lithium-Ion Batteries," Energies, MDPI, vol. 16(4), pages 1-16, February.
    8. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    9. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    10. Theofilos A. Papadopoulos & Kalliopi D. Pippi & Georgios A. Barzegkar-Ntovom & Eleftherios O. Kontis & Angelos I. Nousdilis & Christos L. Athanasiadis & Georgios C. Kryonidis, 2023. "Validation of a Holistic System for Operational Analysis and Provision of Ancillary Services in Active Distribution Networks," Energies, MDPI, vol. 16(6), pages 1-27, March.
    11. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
    12. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Carbon emissions impacts of operational network constraints: The case of Spain during the Covid-19 crisis," Energy Economics, Elsevier, vol. 128(C).
    13. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    14. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
    15. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    16. Raja S, Charles & Kumar N M, Vijaya & J, Senthil kumar & Nesamalar J, Jeslin Drusila, 2021. "Enhancing system reliability by optimally integrating PHEV charging station and renewable distributed generators: A Bi-Level programming approach," Energy, Elsevier, vol. 229(C).
    17. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    18. Balu, Korra & Mukherjee, V., 2024. "Optimal deployment of electric vehicle charging stations, renewable distributed generation with battery energy storage and distribution static compensator in radial distribution network considering un," Applied Energy, Elsevier, vol. 359(C).
    19. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    20. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:339-:d:1029511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.