IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v148y2021ics0960077921003647.html
   My bibliography  Save this article

Dynamics of Cattaneo-Christov Double Diffusion (CCDD) and arrhenius activation law on mixed convective flow towards a stretched Riga device

Author

Listed:
  • Li, Yi-Xia
  • Shah, Faisal
  • Khan, M. Ijaz
  • Chinram, Ronnason
  • Elmasry, Yasser
  • Sun, Tian-Chuan

Abstract

Background Current paper elaborate the impact of MHD flow of Newtonian liquid over a extendable Riga sheet. Cattaneo-Christov (CC) heat and mass flux models in formulation are taken here. Fluid filling porous medium is considered. Influences of activation energy is also considered. Boundary layer approximation is used in obtaining partial differential equations (PDEs). Applying suitable transformation to reduce the given PDEs into ordinary differential (ODEs) system.

Suggested Citation

  • Li, Yi-Xia & Shah, Faisal & Khan, M. Ijaz & Chinram, Ronnason & Elmasry, Yasser & Sun, Tian-Chuan, 2021. "Dynamics of Cattaneo-Christov Double Diffusion (CCDD) and arrhenius activation law on mixed convective flow towards a stretched Riga device," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003647
    DOI: 10.1016/j.chaos.2021.111010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921003647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "Mixed convective entropy optimized flow of rheological nanoliquid subject to Cattaneo-Christov fluxes: An application to solar energy," Energy, Elsevier, vol. 278(PA).
    2. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah & Haroon Ur Rasheed, 2023. "Analysis of Error and Stability of Nanofluid over Horizontal Channel with Heat/Mass Transfer and Nonlinear Thermal Conductivity," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    3. Anum Naseem & Anum Shafiq & Faiza Naseem & Muhammad Umar Farooq, 2022. "Aspects of Homogeneous Heterogeneous Reactions for Nanofluid Flow Over a Riga Surface in the Presence of Viscous Dissipation," Energies, MDPI, vol. 15(19), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s0960077921003647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.