IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p526-d1040191.html
   My bibliography  Save this article

An improved Fractional MPPT Method by Using a Small Circle Approximation of the P–V Characteristic Curve

Author

Listed:
  • Ernesto Bárcenas-Bárcenas

    (Academic Coordination of the Altiplano-Region Campus, Autonomous University of San Luis Potosi, Matehuala, San Luis Potosi 78700, Mexico)

  • Diego R. Espinoza-Trejo

    (Academic Coordination of the Altiplano-Region Campus, Autonomous University of San Luis Potosi, Matehuala, San Luis Potosi 78700, Mexico)

  • José A. Pecina-Sánchez

    (Academic Coordination of the Altiplano-Region Campus, Autonomous University of San Luis Potosi, Matehuala, San Luis Potosi 78700, Mexico)

  • Héctor A. Álvarez-Macías

    (Academic Coordination of the Altiplano-Region Campus, Autonomous University of San Luis Potosi, Matehuala, San Luis Potosi 78700, Mexico)

  • Isaac Compeán-Martínez

    (Academic Coordination of the Altiplano-Region Campus, Autonomous University of San Luis Potosi, Matehuala, San Luis Potosi 78700, Mexico)

  • Ángel A. Vértiz-Hernández

    (Academic Coordination of the Altiplano-Region Campus, Autonomous University of San Luis Potosi, Matehuala, San Luis Potosi 78700, Mexico)

Abstract

This paper presents an analytical solution to the maximum power point tracking (MPPT) problem for photovoltaic (PV) applications in the form of an improved fractional method. The proposal makes use of a mathematical function that describes the relationship between power and voltage in a PV module in a neighborhood including the maximum power point (MPP). The function is generated by using only three points of the P–V curve. Next, by using geometrical relationships, an analytical value for the MPP can be obtained. The advantage of the proposed technique is that it provides an explicit mathematical expression for calculation of the voltage at the maximum power point ( v M P P ) with high accuracy. Even more, complex calculations, manufacturer data, the measurements of short circuit current ( i S C ) and open-circuit voltage ( v O C ) are not required, making the proposal less invasive than other solutions. The proposed method is validated using the P–V curve of one PV module. Experimental work demonstrates the speed in the calculation of v M P P and the feasibility of the proposed solution. In addition, this MPPT proposal requires only the typical and available measurements, namely, PV voltage and current. Consequently, the proposed method could be implemented in most PV applications.

Suggested Citation

  • Ernesto Bárcenas-Bárcenas & Diego R. Espinoza-Trejo & José A. Pecina-Sánchez & Héctor A. Álvarez-Macías & Isaac Compeán-Martínez & Ángel A. Vértiz-Hernández, 2023. "An improved Fractional MPPT Method by Using a Small Circle Approximation of the P–V Characteristic Curve," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:526-:d:1040191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pindado, Santiago & Cubas, Javier, 2017. "Simple mathematical approach to solar cell/panel behavior based on datasheet information," Renewable Energy, Elsevier, vol. 103(C), pages 729-738.
    2. Victor Andrean & Pei Cheng Chang & Kuo Lung Lian, 2018. "A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Int," Energies, MDPI, vol. 11(11), pages 1-25, November.
    3. Fathi Troudi & Houda Jouini & Abdelkader Mami & Nidhal Ben Khedher & Walid Aich & Attia Boudjemline & Mohamed Boujelbene, 2022. "Comparative Assessment between Five Control Techniques to Optimize the Maximum Power Point Tracking Procedure for PV Systems," Mathematics, MDPI, vol. 10(7), pages 1-15, March.
    4. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.
    5. Carlos Restrepo & Nicolas Yanẽz-Monsalvez & Catalina González-Castaño & Samir Kouro & Jose Rodriguez, 2021. "A Fast Converging Hybrid MPPT Algorithm Based on ABC and P&O Techniques for a Partially Shaded PV System," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Nan & Lv, Yanling & Zhang, Yuchen & Zhu, Xianhui, 2023. "Linear fitting Rule of I–V characteristics of thin-film cells based on Bezier function," Energy, Elsevier, vol. 278(PB).
    2. Schuster, Christian Stefano, 2020. "Analytical framework for the assessment and modelling of multi-junction solar cells in the outdoors," Renewable Energy, Elsevier, vol. 152(C), pages 1367-1379.
    3. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    4. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.
    5. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    6. Nahla E. Zakzouk & Ahmed K. Khamis & Ahmed K. Abdelsalam & Barry W. Williams, 2019. "Continuous-Input Continuous-Output Current Buck-Boost DC/DC Converters for Renewable Energy Applications: Modelling and Performance Assessment," Energies, MDPI, vol. 12(11), pages 1-27, June.
    7. Marcin Walczak & Leszek Bychto, 2023. "Transients in Input and Output Signals in DC–DC Converters Working in Maximum Power Point Tracking Systems," Energies, MDPI, vol. 16(12), pages 1-12, June.
    8. Eneko Artetxe & Jokin Uralde & Oscar Barambones & Isidro Calvo & Imanol Martin, 2023. "Maximum Power Point Tracker Controller for Solar Photovoltaic Based on Reinforcement Learning Agent with a Digital Twin," Mathematics, MDPI, vol. 11(9), pages 1-21, May.
    9. Louzazni, Mohamed & Al-Dahidi, Sameer, 2021. "Approximation of photovoltaic characteristics curves using Bézier Curve," Renewable Energy, Elsevier, vol. 174(C), pages 715-732.
    10. Ehsan Jamshidpour & Slavisa Jovanovic & Philippe Poure, 2020. "Equivalent Two Switches and Single Switch Buck/Buck-Boost Circuits for Solar Energy Harvesting Systems," Energies, MDPI, vol. 13(3), pages 1-16, January.
    11. Eyal Amer & Alon Kuperman & Teuvo Suntio, 2019. "Direct Fixed-Step Maximum Power Point Tracking Algorithms with Adaptive Perturbation Frequency," Energies, MDPI, vol. 12(3), pages 1-16, January.
    12. Zixia Yuan & Guojiang Xiong & Xiaofan Fu, 2022. "Artificial Neural Network for Fault Diagnosis of Solar Photovoltaic Systems: A Survey," Energies, MDPI, vol. 15(22), pages 1-18, November.
    13. Ming-Fa Tsai & Chung-Shi Tseng & Kuo-Tung Hung & Shih-Hua Lin, 2021. "A Novel DSP-Based MPPT Control Design for Photovoltaic Systems Using Neural Network Compensator," Energies, MDPI, vol. 14(11), pages 1-20, June.
    14. Amjad Ali & Kashif Irshad & Mohammad Farhan Khan & Md Moinul Hossain & Ibrahim N. A. Al-Duais & Muhammad Zeeshan Malik, 2021. "Artificial Intelligence and Bio-Inspired Soft Computing-Based Maximum Power Plant Tracking for a Solar Photovoltaic System under Non-Uniform Solar Irradiance Shading Conditions—A Review," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    15. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    16. Yang Meng & Zunliang Chen & Hui Cheng & Enpu Wang & Baohua Tan, 2023. "An Efficient Variable Step Solar Maximum Power Point Tracking Algorithm," Energies, MDPI, vol. 16(3), pages 1-20, January.
    17. Amjad Ali & K. Almutairi & Muhammad Zeeshan Malik & Kashif Irshad & Vineet Tirth & Salem Algarni & Md. Hasan Zahir & Saiful Islam & Md Shafiullah & Neeraj Kumar Shukla, 2020. "Review of Online and Soft Computing Maximum Power Point Tracking Techniques under Non-Uniform Solar Irradiation Conditions," Energies, MDPI, vol. 13(12), pages 1-37, June.
    18. Prasannaa Poongavanam & Aneesh A. Chand & Van Ba Tai & Yash Munnalal Gupta & Madhan Kuppusamy & Joshuva Arockia Dhanraj & Karthikeyan Velmurugan & Rajasekar Rajagopal & Tholkappiyan Ramachandran & Kus, 2023. "Annual Thermal Management of the Photovoltaic Module to Enhance Electrical Power and Efficiency Using Heat Batteries," Energies, MDPI, vol. 16(10), pages 1-18, May.
    19. Tarek Berghout & Mohamed Benbouzid & Toufik Bentrcia & Xiandong Ma & Siniša Djurović & Leïla-Hayet Mouss, 2021. "Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects," Energies, MDPI, vol. 14(19), pages 1-24, October.
    20. Fateh Mehazzem & Maina André & Rudy Calif, 2022. "Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region," Energies, MDPI, vol. 15(22), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:526-:d:1040191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.