IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p399-d201171.html
   My bibliography  Save this article

Direct Fixed-Step Maximum Power Point Tracking Algorithms with Adaptive Perturbation Frequency

Author

Listed:
  • Eyal Amer

    (Applied Energy Laboratory, Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel)

  • Alon Kuperman

    (Applied Energy Laboratory, Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel)

  • Teuvo Suntio

    (Laboratory of Electrical Energy Engineering, Tampere University of Technology, Tampere 33720, Finland)

Abstract

Owing to the good trade-off between implementation and performance, fixed-step direct maximum power point tracking techniques (e.g., perturb and observe and incremental conductance algorithms) have gained popularity over the years. In order to optimize their performance, perturbation frequency and perturbation step size are usually determined a priori. While the first mentioned design parameter is typically dictated by the worst-case settling time of the combined energy conversion system, the latter must be high enough to both differentiate the system response from that caused by irradiation variation and match the finite resolution of the analog-to-digital converter in case of digital implementation. Well-established design guidelines, however, aim to optimize steady-state algorithm performance while leaving transients nearly untreated. To improve transient behavior while keeping the steady-state operation unaltered, variable step direct maximum power point tracking algorithms based on adaptive perturbation step size were proposed. This paper proposes a concept of utilizing adaptive perturbation frequency rather than variable step size, based on recently revised guidelines for designing fixed-step direct maximum power point tracking techniques. Preliminary results demonstrate the superiority of the proposed method over adaptive perturbation step size operation during transients, without compromising the steady state performance.

Suggested Citation

  • Eyal Amer & Alon Kuperman & Teuvo Suntio, 2019. "Direct Fixed-Step Maximum Power Point Tracking Algorithms with Adaptive Perturbation Frequency," Energies, MDPI, vol. 12(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:399-:d:201171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/399/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/399/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.
    2. Chendi Li & Yuanrui Chen & Dongbao Zhou & Junfeng Liu & Jun Zeng, 2016. "A High-Performance Adaptive Incremental Conductance MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 9(4), pages 1-17, April.
    3. Lineykin, Simon & Averbukh, Moshe & Kuperman, Alon, 2014. "An improved approach to extract the single-diode equivalent circuit parameters of a photovoltaic cell/panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 282-289.
    4. Teuvo Suntio & Tuomas Messo & Aapo Aapro & Jyri Kivimäki & Alon Kuperman, 2017. "Review of PV Generator as an Input Source for Power Electronic Converters," Energies, MDPI, vol. 10(8), pages 1-25, July.
    5. Victor Andrean & Pei Cheng Chang & Kuo Lung Lian, 2018. "A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Int," Energies, MDPI, vol. 11(11), pages 1-25, November.
    6. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
    7. Kuperman, Alon & Averbukh, Moshe & Lineykin, Simon, 2013. "Maximum power point matching versus maximum power point tracking for solar generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 11-17.
    8. Lyden, S. & Haque, M.E., 2015. "Maximum Power Point Tracking techniques for photovoltaic systems: A comprehensive review and comparative analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1504-1518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teuvo Suntio & Alon Kuperman, 2019. "Maximum Perturbation Step Size in MPP-Tracking Control for Ensuring Predicted PV Power Settling Behavior," Energies, MDPI, vol. 12(20), pages 1-19, October.
    2. Teuvo Suntio & Tuomas Messo, 2019. "Power Electronics in Renewable Energy Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    2. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.
    3. Kermadi, Mostefa & Berkouk, El Madjid, 2017. "Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 369-386.
    4. Ming-Fa Tsai & Chung-Shi Tseng & Kuo-Tung Hung & Shih-Hua Lin, 2021. "A Novel DSP-Based MPPT Control Design for Photovoltaic Systems Using Neural Network Compensator," Energies, MDPI, vol. 14(11), pages 1-20, June.
    5. Yinxiao Zhu & Moon Keun Kim & Huiqing Wen, 2018. "Simulation and Analysis of Perturbation and Observation-Based Self-Adaptable Step Size Maximum Power Point Tracking Strategy with Low Power Loss for Photovoltaics," Energies, MDPI, vol. 12(1), pages 1-20, December.
    6. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Teuvo Suntio & Alon Kuperman, 2019. "Maximum Perturbation Step Size in MPP-Tracking Control for Ensuring Predicted PV Power Settling Behavior," Energies, MDPI, vol. 12(20), pages 1-19, October.
    8. Rustemli, Sabir & Dincer, Furkan & Unal, Emin & Karaaslan, Muharrem & Sabah, Cumali, 2013. "The analysis on sun tracking and cooling systems for photovoltaic panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 598-603.
    9. Diego R. Espinoza Trejo & Ernesto Bárcenas & José E. Hernández Díez & Guillermo Bossio & Gerardo Espinosa Pérez, 2018. "Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
    10. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    11. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    12. Yu-Pei Huang & Cheng-En Ye & Xiang Chen, 2018. "A Modified Firefly Algorithm with Rapid Response Maximum Power Point Tracking for Photovoltaic Systems under Partial Shading Conditions," Energies, MDPI, vol. 11(9), pages 1-33, August.
    13. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    14. Jiang, Joe-Air & Su, Yu-Li & Kuo, Kun-Chang & Wang, Chien-Hao & Liao, Min-Sheng & Wang, Jen-Cheng & Huang, Chen-Kang & Chou, Cheng-Ying & Lee, Chien-Hsing & Shieh, Jyh-Cherng, 2017. "On a hybrid MPPT control scheme to improve energy harvesting performance of traditional two-stage inverters used in photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1113-1128.
    15. Arabshahi, M.R. & Torkaman, H. & Keyhani, A., 2020. "A method for hybrid extraction of single-diode model parameters of photovoltaics," Renewable Energy, Elsevier, vol. 158(C), pages 236-252.
    16. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    17. Diogo Cabral & Abolfazl Hayati & João Gomes & Hossein Afzali Gorouh & Pouriya Nasseriyan & Mazyar Salmanzadeh, 2023. "Experimental Electrical Assessment Evaluation of a Vertical n-PERT Half-Size Bifacial Solar Cell String Receiver on a Parabolic Trough Solar Collector," Energies, MDPI, vol. 16(4), pages 1-21, February.
    18. Alon Kuperman & Moshe Sitbon & Shlomo Gadelovits & Moshe Averbukh & Teuvo Suntio, 2015. "Single-Source Multi-Battery Solar Charger: Analysis and Stability Issues," Energies, MDPI, vol. 8(7), pages 1-24, June.
    19. Saima Siouane & Slaviša Jovanović & Philippe Poure, 2018. "Service Continuity of PV Synchronous Buck/Buck-Boost Converter with Energy Storage †," Energies, MDPI, vol. 11(6), pages 1-20, May.
    20. Nahla E. Zakzouk & Ahmed K. Khamis & Ahmed K. Abdelsalam & Barry W. Williams, 2019. "Continuous-Input Continuous-Output Current Buck-Boost DC/DC Converters for Renewable Energy Applications: Modelling and Performance Assessment," Energies, MDPI, vol. 12(11), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:399-:d:201171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.